Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise.
Using 8‐25s period Rayleigh and Love wave phase velocity dispersion data extracted from seismic ambient noise, we (i) model the 3D shear wave velocity structure of the West Antarctic crust and (ii) map variations in crustal radial anisotropy. Enhanced regional resolution is offered by the UK Antarct...
Published in: | Geochemistry, Geophysics, Geosystems |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
John Wiley
2019
|
Subjects: | |
Online Access: | http://dro.dur.ac.uk/29315/ http://dro.dur.ac.uk/29315/1/29315.pdf http://dro.dur.ac.uk/29315/2/29315.pdf https://doi.org/10.1029/2019GC008459 |
id |
ftunivdurham:oai:dro.dur.ac.uk.OAI2:29315 |
---|---|
record_format |
openpolar |
spelling |
ftunivdurham:oai:dro.dur.ac.uk.OAI2:29315 2023-05-15T13:24:10+02:00 Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. O'Donnell, J.P. Brisbourne, A.M. Stuart, G.W. Dunham, C.K. Yang, Y. Nield, G.A. Whitehouse, P.L. Nyblade, A.A. Wiens, D.A. Anandakrishnan, S. Aster, R.C. Huerta, A.D. Lloyd, A.J. Wilson, T. Winberry, J.P. 2019-11-30 application/pdf http://dro.dur.ac.uk/29315/ http://dro.dur.ac.uk/29315/1/29315.pdf http://dro.dur.ac.uk/29315/2/29315.pdf https://doi.org/10.1029/2019GC008459 unknown John Wiley dro:29315 issn:1525-2027 doi:10.1029/2019GC008459 http://dro.dur.ac.uk/29315/ https://doi.org/10.1029/2019GC008459 http://dro.dur.ac.uk/29315/1/29315.pdf http://dro.dur.ac.uk/29315/2/29315.pdf O'Donnell, J.P., Brisbourne, A.M., Stuart, G.W., Dunham, C.K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A.A., Wiens, D.A., Anandakrishnan, S., Aster, R.C., Huerta, A.D., Lloyd, A.J., Wilson, T. & Winberry, J.P. (2019). Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. Geochemistry, Geophysics, Geosystems 20(11): 5014-5037. 10.1029/2019GC008459. To view the published open abstract, go to https://doi.org/ and enter the DOI. Geochemistry, geophysics, geosystems. , 2019, Vol.20(11), pp.5014-5037 [Peer Reviewed Journal] Article PeerReviewed 2019 ftunivdurham https://doi.org/10.1029/2019GC008459 2020-06-11T22:25:19Z Using 8‐25s period Rayleigh and Love wave phase velocity dispersion data extracted from seismic ambient noise, we (i) model the 3D shear wave velocity structure of the West Antarctic crust and (ii) map variations in crustal radial anisotropy. Enhanced regional resolution is offered by the UK Antarctic Seismic Network. In the West Antarctic Rift System (WARS), a ridge of crust ~26‐30km thick extending south from Marie Byrd Land separates domains of more extended crust (~22km thick) in the Ross and Amundsen Sea Embayments, suggesting along‐strike variability in the Cenozoic evolution of the WARS. The southern margin of the WARS is defined along the southern Transantarctic Mountains (TAM) and Haag Nunataks‐Ellsworth Whitmore Mountains (HEW) block by a sharp crustal thickness gradient. Crust ~35‐40km is modelled beneath the Haag Nunataks‐Ellsworth Mountains, decreasing to ~30‐32km km thick beneath the Whitmore Mountains, reflecting distinct structural domains within the composite HEW block. Our analysis suggests that the lower crust and potentially the mid crust is positively radially anisotropic (VSH > VSV) across West Antarctica. The strongest anisotropic signature is observed in the HEW block, emphasising its unique provenance amongst West Antarctica's crustal units, and conceivably reflects a ~13km thick metasedimentary succession atop Precambrian metamorphic basement. Positive radial anisotropy in the WARS crust is consistent with observations in extensional settings, and likely reflects the lattice‐preferred orientation of minerals such as mica and amphibole by extensional deformation. Our observations support a contention that anisotropy may be ubiquitous in continental crust. Article in Journal/Newspaper Amundsen Sea Antarc* Antarctic Antarctica Marie Byrd Land West Antarctica Durham University: Durham Research Online Amundsen Sea Antarctic Byrd Ellsworth Mountains ENVELOPE(-85.000,-85.000,-78.750,-78.750) Haag ENVELOPE(-79.000,-79.000,-77.667,-77.667) Haag Nunataks ENVELOPE(-78.400,-78.400,-77.000,-77.000) Marie Byrd Land ENVELOPE(-130.000,-130.000,-78.000,-78.000) Transantarctic Mountains West Antarctica Whitmore Mountains ENVELOPE(-104.000,-104.000,-82.500,-82.500) Geochemistry, Geophysics, Geosystems 20 11 5014 5037 |
institution |
Open Polar |
collection |
Durham University: Durham Research Online |
op_collection_id |
ftunivdurham |
language |
unknown |
description |
Using 8‐25s period Rayleigh and Love wave phase velocity dispersion data extracted from seismic ambient noise, we (i) model the 3D shear wave velocity structure of the West Antarctic crust and (ii) map variations in crustal radial anisotropy. Enhanced regional resolution is offered by the UK Antarctic Seismic Network. In the West Antarctic Rift System (WARS), a ridge of crust ~26‐30km thick extending south from Marie Byrd Land separates domains of more extended crust (~22km thick) in the Ross and Amundsen Sea Embayments, suggesting along‐strike variability in the Cenozoic evolution of the WARS. The southern margin of the WARS is defined along the southern Transantarctic Mountains (TAM) and Haag Nunataks‐Ellsworth Whitmore Mountains (HEW) block by a sharp crustal thickness gradient. Crust ~35‐40km is modelled beneath the Haag Nunataks‐Ellsworth Mountains, decreasing to ~30‐32km km thick beneath the Whitmore Mountains, reflecting distinct structural domains within the composite HEW block. Our analysis suggests that the lower crust and potentially the mid crust is positively radially anisotropic (VSH > VSV) across West Antarctica. The strongest anisotropic signature is observed in the HEW block, emphasising its unique provenance amongst West Antarctica's crustal units, and conceivably reflects a ~13km thick metasedimentary succession atop Precambrian metamorphic basement. Positive radial anisotropy in the WARS crust is consistent with observations in extensional settings, and likely reflects the lattice‐preferred orientation of minerals such as mica and amphibole by extensional deformation. Our observations support a contention that anisotropy may be ubiquitous in continental crust. |
format |
Article in Journal/Newspaper |
author |
O'Donnell, J.P. Brisbourne, A.M. Stuart, G.W. Dunham, C.K. Yang, Y. Nield, G.A. Whitehouse, P.L. Nyblade, A.A. Wiens, D.A. Anandakrishnan, S. Aster, R.C. Huerta, A.D. Lloyd, A.J. Wilson, T. Winberry, J.P. |
spellingShingle |
O'Donnell, J.P. Brisbourne, A.M. Stuart, G.W. Dunham, C.K. Yang, Y. Nield, G.A. Whitehouse, P.L. Nyblade, A.A. Wiens, D.A. Anandakrishnan, S. Aster, R.C. Huerta, A.D. Lloyd, A.J. Wilson, T. Winberry, J.P. Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. |
author_facet |
O'Donnell, J.P. Brisbourne, A.M. Stuart, G.W. Dunham, C.K. Yang, Y. Nield, G.A. Whitehouse, P.L. Nyblade, A.A. Wiens, D.A. Anandakrishnan, S. Aster, R.C. Huerta, A.D. Lloyd, A.J. Wilson, T. Winberry, J.P. |
author_sort |
O'Donnell, J.P. |
title |
Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. |
title_short |
Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. |
title_full |
Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. |
title_fullStr |
Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. |
title_full_unstemmed |
Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. |
title_sort |
mapping crustal shear wave velocity structure and radial anisotropy beneath west antarctica using seismic ambient noise. |
publisher |
John Wiley |
publishDate |
2019 |
url |
http://dro.dur.ac.uk/29315/ http://dro.dur.ac.uk/29315/1/29315.pdf http://dro.dur.ac.uk/29315/2/29315.pdf https://doi.org/10.1029/2019GC008459 |
long_lat |
ENVELOPE(-85.000,-85.000,-78.750,-78.750) ENVELOPE(-79.000,-79.000,-77.667,-77.667) ENVELOPE(-78.400,-78.400,-77.000,-77.000) ENVELOPE(-130.000,-130.000,-78.000,-78.000) ENVELOPE(-104.000,-104.000,-82.500,-82.500) |
geographic |
Amundsen Sea Antarctic Byrd Ellsworth Mountains Haag Haag Nunataks Marie Byrd Land Transantarctic Mountains West Antarctica Whitmore Mountains |
geographic_facet |
Amundsen Sea Antarctic Byrd Ellsworth Mountains Haag Haag Nunataks Marie Byrd Land Transantarctic Mountains West Antarctica Whitmore Mountains |
genre |
Amundsen Sea Antarc* Antarctic Antarctica Marie Byrd Land West Antarctica |
genre_facet |
Amundsen Sea Antarc* Antarctic Antarctica Marie Byrd Land West Antarctica |
op_source |
Geochemistry, geophysics, geosystems. , 2019, Vol.20(11), pp.5014-5037 [Peer Reviewed Journal] |
op_relation |
dro:29315 issn:1525-2027 doi:10.1029/2019GC008459 http://dro.dur.ac.uk/29315/ https://doi.org/10.1029/2019GC008459 http://dro.dur.ac.uk/29315/1/29315.pdf http://dro.dur.ac.uk/29315/2/29315.pdf |
op_rights |
O'Donnell, J.P., Brisbourne, A.M., Stuart, G.W., Dunham, C.K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A.A., Wiens, D.A., Anandakrishnan, S., Aster, R.C., Huerta, A.D., Lloyd, A.J., Wilson, T. & Winberry, J.P. (2019). Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. Geochemistry, Geophysics, Geosystems 20(11): 5014-5037. 10.1029/2019GC008459. To view the published open abstract, go to https://doi.org/ and enter the DOI. |
op_doi |
https://doi.org/10.1029/2019GC008459 |
container_title |
Geochemistry, Geophysics, Geosystems |
container_volume |
20 |
container_issue |
11 |
container_start_page |
5014 |
op_container_end_page |
5037 |
_version_ |
1766377844880965632 |