Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise.

Using 8‐25s period Rayleigh and Love wave phase velocity dispersion data extracted from seismic ambient noise, we (i) model the 3D shear wave velocity structure of the West Antarctic crust and (ii) map variations in crustal radial anisotropy. Enhanced regional resolution is offered by the UK Antarct...

Full description

Bibliographic Details
Published in:Geochemistry, Geophysics, Geosystems
Main Authors: O'Donnell, J.P., Brisbourne, A.M., Stuart, G.W., Dunham, C.K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A.A., Wiens, D.A., Anandakrishnan, S., Aster, R.C., Huerta, A.D., Lloyd, A.J., Wilson, T., Winberry, J.P.
Format: Article in Journal/Newspaper
Language:unknown
Published: John Wiley 2019
Subjects:
Online Access:http://dro.dur.ac.uk/29315/
http://dro.dur.ac.uk/29315/1/29315.pdf
http://dro.dur.ac.uk/29315/2/29315.pdf
https://doi.org/10.1029/2019GC008459
id ftunivdurham:oai:dro.dur.ac.uk.OAI2:29315
record_format openpolar
spelling ftunivdurham:oai:dro.dur.ac.uk.OAI2:29315 2023-05-15T13:24:10+02:00 Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. O'Donnell, J.P. Brisbourne, A.M. Stuart, G.W. Dunham, C.K. Yang, Y. Nield, G.A. Whitehouse, P.L. Nyblade, A.A. Wiens, D.A. Anandakrishnan, S. Aster, R.C. Huerta, A.D. Lloyd, A.J. Wilson, T. Winberry, J.P. 2019-11-30 application/pdf http://dro.dur.ac.uk/29315/ http://dro.dur.ac.uk/29315/1/29315.pdf http://dro.dur.ac.uk/29315/2/29315.pdf https://doi.org/10.1029/2019GC008459 unknown John Wiley dro:29315 issn:1525-2027 doi:10.1029/2019GC008459 http://dro.dur.ac.uk/29315/ https://doi.org/10.1029/2019GC008459 http://dro.dur.ac.uk/29315/1/29315.pdf http://dro.dur.ac.uk/29315/2/29315.pdf O'Donnell, J.P., Brisbourne, A.M., Stuart, G.W., Dunham, C.K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A.A., Wiens, D.A., Anandakrishnan, S., Aster, R.C., Huerta, A.D., Lloyd, A.J., Wilson, T. & Winberry, J.P. (2019). Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. Geochemistry, Geophysics, Geosystems 20(11): 5014-5037. 10.1029/2019GC008459. To view the published open abstract, go to https://doi.org/ and enter the DOI. Geochemistry, geophysics, geosystems. , 2019, Vol.20(11), pp.5014-5037 [Peer Reviewed Journal] Article PeerReviewed 2019 ftunivdurham https://doi.org/10.1029/2019GC008459 2020-06-11T22:25:19Z Using 8‐25s period Rayleigh and Love wave phase velocity dispersion data extracted from seismic ambient noise, we (i) model the 3D shear wave velocity structure of the West Antarctic crust and (ii) map variations in crustal radial anisotropy. Enhanced regional resolution is offered by the UK Antarctic Seismic Network. In the West Antarctic Rift System (WARS), a ridge of crust ~26‐30km thick extending south from Marie Byrd Land separates domains of more extended crust (~22km thick) in the Ross and Amundsen Sea Embayments, suggesting along‐strike variability in the Cenozoic evolution of the WARS. The southern margin of the WARS is defined along the southern Transantarctic Mountains (TAM) and Haag Nunataks‐Ellsworth Whitmore Mountains (HEW) block by a sharp crustal thickness gradient. Crust ~35‐40km is modelled beneath the Haag Nunataks‐Ellsworth Mountains, decreasing to ~30‐32km km thick beneath the Whitmore Mountains, reflecting distinct structural domains within the composite HEW block. Our analysis suggests that the lower crust and potentially the mid crust is positively radially anisotropic (VSH > VSV) across West Antarctica. The strongest anisotropic signature is observed in the HEW block, emphasising its unique provenance amongst West Antarctica's crustal units, and conceivably reflects a ~13km thick metasedimentary succession atop Precambrian metamorphic basement. Positive radial anisotropy in the WARS crust is consistent with observations in extensional settings, and likely reflects the lattice‐preferred orientation of minerals such as mica and amphibole by extensional deformation. Our observations support a contention that anisotropy may be ubiquitous in continental crust. Article in Journal/Newspaper Amundsen Sea Antarc* Antarctic Antarctica Marie Byrd Land West Antarctica Durham University: Durham Research Online Amundsen Sea Antarctic Byrd Ellsworth Mountains ENVELOPE(-85.000,-85.000,-78.750,-78.750) Haag ENVELOPE(-79.000,-79.000,-77.667,-77.667) Haag Nunataks ENVELOPE(-78.400,-78.400,-77.000,-77.000) Marie Byrd Land ENVELOPE(-130.000,-130.000,-78.000,-78.000) Transantarctic Mountains West Antarctica Whitmore Mountains ENVELOPE(-104.000,-104.000,-82.500,-82.500) Geochemistry, Geophysics, Geosystems 20 11 5014 5037
institution Open Polar
collection Durham University: Durham Research Online
op_collection_id ftunivdurham
language unknown
description Using 8‐25s period Rayleigh and Love wave phase velocity dispersion data extracted from seismic ambient noise, we (i) model the 3D shear wave velocity structure of the West Antarctic crust and (ii) map variations in crustal radial anisotropy. Enhanced regional resolution is offered by the UK Antarctic Seismic Network. In the West Antarctic Rift System (WARS), a ridge of crust ~26‐30km thick extending south from Marie Byrd Land separates domains of more extended crust (~22km thick) in the Ross and Amundsen Sea Embayments, suggesting along‐strike variability in the Cenozoic evolution of the WARS. The southern margin of the WARS is defined along the southern Transantarctic Mountains (TAM) and Haag Nunataks‐Ellsworth Whitmore Mountains (HEW) block by a sharp crustal thickness gradient. Crust ~35‐40km is modelled beneath the Haag Nunataks‐Ellsworth Mountains, decreasing to ~30‐32km km thick beneath the Whitmore Mountains, reflecting distinct structural domains within the composite HEW block. Our analysis suggests that the lower crust and potentially the mid crust is positively radially anisotropic (VSH > VSV) across West Antarctica. The strongest anisotropic signature is observed in the HEW block, emphasising its unique provenance amongst West Antarctica's crustal units, and conceivably reflects a ~13km thick metasedimentary succession atop Precambrian metamorphic basement. Positive radial anisotropy in the WARS crust is consistent with observations in extensional settings, and likely reflects the lattice‐preferred orientation of minerals such as mica and amphibole by extensional deformation. Our observations support a contention that anisotropy may be ubiquitous in continental crust.
format Article in Journal/Newspaper
author O'Donnell, J.P.
Brisbourne, A.M.
Stuart, G.W.
Dunham, C.K.
Yang, Y.
Nield, G.A.
Whitehouse, P.L.
Nyblade, A.A.
Wiens, D.A.
Anandakrishnan, S.
Aster, R.C.
Huerta, A.D.
Lloyd, A.J.
Wilson, T.
Winberry, J.P.
spellingShingle O'Donnell, J.P.
Brisbourne, A.M.
Stuart, G.W.
Dunham, C.K.
Yang, Y.
Nield, G.A.
Whitehouse, P.L.
Nyblade, A.A.
Wiens, D.A.
Anandakrishnan, S.
Aster, R.C.
Huerta, A.D.
Lloyd, A.J.
Wilson, T.
Winberry, J.P.
Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise.
author_facet O'Donnell, J.P.
Brisbourne, A.M.
Stuart, G.W.
Dunham, C.K.
Yang, Y.
Nield, G.A.
Whitehouse, P.L.
Nyblade, A.A.
Wiens, D.A.
Anandakrishnan, S.
Aster, R.C.
Huerta, A.D.
Lloyd, A.J.
Wilson, T.
Winberry, J.P.
author_sort O'Donnell, J.P.
title Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise.
title_short Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise.
title_full Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise.
title_fullStr Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise.
title_full_unstemmed Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise.
title_sort mapping crustal shear wave velocity structure and radial anisotropy beneath west antarctica using seismic ambient noise.
publisher John Wiley
publishDate 2019
url http://dro.dur.ac.uk/29315/
http://dro.dur.ac.uk/29315/1/29315.pdf
http://dro.dur.ac.uk/29315/2/29315.pdf
https://doi.org/10.1029/2019GC008459
long_lat ENVELOPE(-85.000,-85.000,-78.750,-78.750)
ENVELOPE(-79.000,-79.000,-77.667,-77.667)
ENVELOPE(-78.400,-78.400,-77.000,-77.000)
ENVELOPE(-130.000,-130.000,-78.000,-78.000)
ENVELOPE(-104.000,-104.000,-82.500,-82.500)
geographic Amundsen Sea
Antarctic
Byrd
Ellsworth Mountains
Haag
Haag Nunataks
Marie Byrd Land
Transantarctic Mountains
West Antarctica
Whitmore Mountains
geographic_facet Amundsen Sea
Antarctic
Byrd
Ellsworth Mountains
Haag
Haag Nunataks
Marie Byrd Land
Transantarctic Mountains
West Antarctica
Whitmore Mountains
genre Amundsen Sea
Antarc*
Antarctic
Antarctica
Marie Byrd Land
West Antarctica
genre_facet Amundsen Sea
Antarc*
Antarctic
Antarctica
Marie Byrd Land
West Antarctica
op_source Geochemistry, geophysics, geosystems. , 2019, Vol.20(11), pp.5014-5037 [Peer Reviewed Journal]
op_relation dro:29315
issn:1525-2027
doi:10.1029/2019GC008459
http://dro.dur.ac.uk/29315/
https://doi.org/10.1029/2019GC008459
http://dro.dur.ac.uk/29315/1/29315.pdf
http://dro.dur.ac.uk/29315/2/29315.pdf
op_rights O'Donnell, J.P., Brisbourne, A.M., Stuart, G.W., Dunham, C.K., Yang, Y., Nield, G.A., Whitehouse, P.L., Nyblade, A.A., Wiens, D.A., Anandakrishnan, S., Aster, R.C., Huerta, A.D., Lloyd, A.J., Wilson, T. & Winberry, J.P. (2019). Mapping crustal shear wave velocity structure and radial anisotropy beneath West Antarctica using seismic ambient noise. Geochemistry, Geophysics, Geosystems 20(11): 5014-5037. 10.1029/2019GC008459. To view the published open abstract, go to https://doi.org/ and enter the DOI.
op_doi https://doi.org/10.1029/2019GC008459
container_title Geochemistry, Geophysics, Geosystems
container_volume 20
container_issue 11
container_start_page 5014
op_container_end_page 5037
_version_ 1766377844880965632