Impacts of reliability on operational performance and cost of energy evaluation of multimegawatt, far-offshore wind Turbines.

Wind energy is growing at a fast pace around the world. According to a report published by WindEurope, 55% of total power capacity installations in the EU came from wind in 2017. In this context, offshore wind plays a decisive role, with countries such as the UK leading the development of large-scal...

Full description

Bibliographic Details
Published in:Volume 3: Structures, Safety, and Reliability
Main Authors: Dao, Cuong D., Kazemtabrizi, Behzad, Crabtree, Christopher J.
Format: Book Part
Language:unknown
Published: American Society of Mechanical Engineers 2019
Subjects:
Online Access:http://dro.dur.ac.uk/28057/
http://dro.dur.ac.uk/28057/1/28057.pdf
https://doi.org/10.1115/OMAE2019-95561
id ftunivdurham:oai:dro.dur.ac.uk.OAI2:28057
record_format openpolar
spelling ftunivdurham:oai:dro.dur.ac.uk.OAI2:28057 2023-05-15T14:24:15+02:00 Impacts of reliability on operational performance and cost of energy evaluation of multimegawatt, far-offshore wind Turbines. Dao, Cuong D. Kazemtabrizi, Behzad Crabtree, Christopher J. 2019-11-11 application/pdf http://dro.dur.ac.uk/28057/ http://dro.dur.ac.uk/28057/1/28057.pdf https://doi.org/10.1115/OMAE2019-95561 unknown American Society of Mechanical Engineers dro:28057 http://dro.dur.ac.uk/28057/ https://doi.org/10.1115/OMAE2019-95561 http://dro.dur.ac.uk/28057/1/28057.pdf (2019). Conference Proceedings: ASME 38th International Conference on Ocean, Offshore & Arctic Engineering. : American Society of Mechanical Engineers, pp. OMAE2019-95561, V003T02A072 Book chapter PeerReviewed 2019 ftunivdurham https://doi.org/10.1115/OMAE2019-95561 2020-05-28T22:42:16Z Wind energy is growing at a fast pace around the world. According to a report published by WindEurope, 55% of total power capacity installations in the EU came from wind in 2017. In this context, offshore wind plays a decisive role, with countries such as the UK leading the development of large-scale offshore wind projects within Europe and around the world. It is essential that the cost of energy from offshore wind remains competitive with other sources of energy to encourage further investment in offshore wind developments. One way to maintain and further reduce the cost of offshore wind energy is to take advantage of economies of scale by increasing the megawatt ratings of offshore wind turbines. On the other hand, the operational expenditure of the turbines could also be reduced significantly. In this paper, we present a new integrated operation simulation framework for performance evaluation of multi-megawatt direct drive wind turbines suitable for use in far offshore wind farms. The operation simulation considers several essential wind turbine data such as component reliability, i.e. failure rates and downtimes per failure, historical wind speed, turbine information, and repair cost per failure to estimate the operational and economic performance of the wind turbine in its entire lifetime. In the proposed operation simulation, component reliability models and a wind power model are coupled together to simulate wind turbine operation over its entire lifetime using a time-sequential Monte Carlo simulation. Since the reliability data for large-scale offshore wind turbines are scarce and/or restricted to only direct stakeholders, a range of operational profiles for the turbines based on different level of reliability are simulated. In addition, the economic performance of the turbine is measured by defining an index for levelised cost of energy as a function of component reliability. In this way, the wind turbine reliability, power output, failure cost and levelised cost of energy are estimated under the variation of input reliability data. The results of this paper can inform wind turbine performance depending on the reliability of its components, and provide useful information for critical components identification and economic assessment of future far offshore wind turbines. Book Part Arctic Durham University: Durham Research Online Volume 3: Structures, Safety, and Reliability
institution Open Polar
collection Durham University: Durham Research Online
op_collection_id ftunivdurham
language unknown
description Wind energy is growing at a fast pace around the world. According to a report published by WindEurope, 55% of total power capacity installations in the EU came from wind in 2017. In this context, offshore wind plays a decisive role, with countries such as the UK leading the development of large-scale offshore wind projects within Europe and around the world. It is essential that the cost of energy from offshore wind remains competitive with other sources of energy to encourage further investment in offshore wind developments. One way to maintain and further reduce the cost of offshore wind energy is to take advantage of economies of scale by increasing the megawatt ratings of offshore wind turbines. On the other hand, the operational expenditure of the turbines could also be reduced significantly. In this paper, we present a new integrated operation simulation framework for performance evaluation of multi-megawatt direct drive wind turbines suitable for use in far offshore wind farms. The operation simulation considers several essential wind turbine data such as component reliability, i.e. failure rates and downtimes per failure, historical wind speed, turbine information, and repair cost per failure to estimate the operational and economic performance of the wind turbine in its entire lifetime. In the proposed operation simulation, component reliability models and a wind power model are coupled together to simulate wind turbine operation over its entire lifetime using a time-sequential Monte Carlo simulation. Since the reliability data for large-scale offshore wind turbines are scarce and/or restricted to only direct stakeholders, a range of operational profiles for the turbines based on different level of reliability are simulated. In addition, the economic performance of the turbine is measured by defining an index for levelised cost of energy as a function of component reliability. In this way, the wind turbine reliability, power output, failure cost and levelised cost of energy are estimated under the variation of input reliability data. The results of this paper can inform wind turbine performance depending on the reliability of its components, and provide useful information for critical components identification and economic assessment of future far offshore wind turbines.
format Book Part
author Dao, Cuong D.
Kazemtabrizi, Behzad
Crabtree, Christopher J.
spellingShingle Dao, Cuong D.
Kazemtabrizi, Behzad
Crabtree, Christopher J.
Impacts of reliability on operational performance and cost of energy evaluation of multimegawatt, far-offshore wind Turbines.
author_facet Dao, Cuong D.
Kazemtabrizi, Behzad
Crabtree, Christopher J.
author_sort Dao, Cuong D.
title Impacts of reliability on operational performance and cost of energy evaluation of multimegawatt, far-offshore wind Turbines.
title_short Impacts of reliability on operational performance and cost of energy evaluation of multimegawatt, far-offshore wind Turbines.
title_full Impacts of reliability on operational performance and cost of energy evaluation of multimegawatt, far-offshore wind Turbines.
title_fullStr Impacts of reliability on operational performance and cost of energy evaluation of multimegawatt, far-offshore wind Turbines.
title_full_unstemmed Impacts of reliability on operational performance and cost of energy evaluation of multimegawatt, far-offshore wind Turbines.
title_sort impacts of reliability on operational performance and cost of energy evaluation of multimegawatt, far-offshore wind turbines.
publisher American Society of Mechanical Engineers
publishDate 2019
url http://dro.dur.ac.uk/28057/
http://dro.dur.ac.uk/28057/1/28057.pdf
https://doi.org/10.1115/OMAE2019-95561
genre Arctic
genre_facet Arctic
op_source (2019). Conference Proceedings: ASME 38th International Conference on Ocean, Offshore & Arctic Engineering. : American Society of Mechanical Engineers, pp. OMAE2019-95561, V003T02A072
op_relation dro:28057
http://dro.dur.ac.uk/28057/
https://doi.org/10.1115/OMAE2019-95561
http://dro.dur.ac.uk/28057/1/28057.pdf
op_doi https://doi.org/10.1115/OMAE2019-95561
container_title Volume 3: Structures, Safety, and Reliability
_version_ 1766296703805161472