Validation of a Digital Photographic Protocol for Macroscopic Analysis of Wood Anatomy and Colorimetry of Tree Species in Costa Rica

Context: The process of digitizing wood samples for identification and study has become relevant over the past decade, so it is necessary to consider the photographic aspects that generate representation of the images with respect to the physical sample. Method: Ten woodable species were used with n...

Full description

Bibliographic Details
Published in:Ecological Economics
Main Authors: Valverde, Juan Carlos, Arias, Dagoberto, Figueroa, Geovanni, Mata, Erick, Zamora, Nelson
Format: Article in Journal/Newspaper
Language:Spanish
English
Published: Universidad Distrital Francisco José de Caldas 2022
Subjects:
Online Access:https://revistas.udistrital.edu.co/index.php/reving/article/view/16503
id ftunivdfjcojs:oai:revistas.udistrital.edu.co:article/16503
record_format openpolar
institution Open Polar
collection Universidad Distrital Francisco José de Caldas, Centro de Investigaciones y Desarrollo Científico: Sistema de revistas científicas
op_collection_id ftunivdfjcojs
language Spanish
English
topic natural forest
wood anatomy
CIELAB
bosque natural
anatomía de la madera
spellingShingle natural forest
wood anatomy
CIELAB
bosque natural
anatomía de la madera
Valverde, Juan Carlos
Arias, Dagoberto
Figueroa, Geovanni
Mata, Erick
Zamora, Nelson
Validation of a Digital Photographic Protocol for Macroscopic Analysis of Wood Anatomy and Colorimetry of Tree Species in Costa Rica
topic_facet natural forest
wood anatomy
CIELAB
bosque natural
anatomía de la madera
description Context: The process of digitizing wood samples for identification and study has become relevant over the past decade, so it is necessary to consider the photographic aspects that generate representation of the images with respect to the physical sample. Method: Ten woodable species were used with no less than 10 sampled trees, from each individual five 10 mm edge wooden cubes were ex-brought and photographed with a stereoscope with a 20X under four luminosity protocols. In the process, the variation in color (under the coordinates L*, a* and b*), color differential (E*) and chroma (C*), in addition to the density and diameter of vessels, was evaluated. Results: The results showed that the brightness of 50% showed the greatest similarity to the colorimetry of the wood, obtaining values of E* less than 6 in all species and values of C* within the optimal range of 5 to 7. With respect to the anatomical part, the same behavior was given with the ten species, finding that the luminosity treatments at 25 and 50 % showed no significative differences, while the luminosities of 75 and 100% tended to underestimate the value. Conclusions: The treatment luminosity at 25% is ineffective by the darkening of the surface, while exposures to 75 and 100% tended to clarify the surface area and underestimate anatomical characteristics. Contexto: El proceso de digitalización de muestras de madera para su identificación y estudio ha tomado relevancia en la última década, por lo que es necesario considerar los aspectos fotográficos que generen representatividad de las imágenes con respecto a la muestra física. Método: Se utilizaron diez especies maderables con no menos de 10 árboles muestreados, de cada individuo se extrajeron cinco cubos de madera de 10 mm de arista y se fotografiaron con un estereoscopio con un aumento de 20X bajo cuatro protocolos de luminosidad. En el proceso se evaluó la variación del color (bajo las coordenadas L*, a* y b*), diferencial de color (ΔE*) y chroma (ΔC*), además de la densidad y diámetro de vasos. ...
format Article in Journal/Newspaper
author Valverde, Juan Carlos
Arias, Dagoberto
Figueroa, Geovanni
Mata, Erick
Zamora, Nelson
author_facet Valverde, Juan Carlos
Arias, Dagoberto
Figueroa, Geovanni
Mata, Erick
Zamora, Nelson
author_sort Valverde, Juan Carlos
title Validation of a Digital Photographic Protocol for Macroscopic Analysis of Wood Anatomy and Colorimetry of Tree Species in Costa Rica
title_short Validation of a Digital Photographic Protocol for Macroscopic Analysis of Wood Anatomy and Colorimetry of Tree Species in Costa Rica
title_full Validation of a Digital Photographic Protocol for Macroscopic Analysis of Wood Anatomy and Colorimetry of Tree Species in Costa Rica
title_fullStr Validation of a Digital Photographic Protocol for Macroscopic Analysis of Wood Anatomy and Colorimetry of Tree Species in Costa Rica
title_full_unstemmed Validation of a Digital Photographic Protocol for Macroscopic Analysis of Wood Anatomy and Colorimetry of Tree Species in Costa Rica
title_sort validation of a digital photographic protocol for macroscopic analysis of wood anatomy and colorimetry of tree species in costa rica
publisher Universidad Distrital Francisco José de Caldas
publishDate 2022
url https://revistas.udistrital.edu.co/index.php/reving/article/view/16503
genre Arctic
genre_facet Arctic
op_source Ingeniería; Vol. 27 No. 2 (2022): May-August; e16503
Ingeniería; Vol. 27 Núm. 2 (2022): Mayo-agosto; e16503
2344-8393
0121-750X
op_relation https://revistas.udistrital.edu.co/index.php/reving/article/view/16503/18162
https://revistas.udistrital.edu.co/index.php/reving/article/view/16503/18471
K. Brownson, E. P. Anderson, S. Ferreira, S. Wenger, L. Fowler, and L. German, “Governance of payments for ecosystem services influences social and environmental outcomes in Costa Rica”, Ecol. Econ., vol. 174, 2020. https://doi.org/10.1016/j.ecolecon.2020.106659 [2] M. T. van Wijk, M. Williams, and G. R. Shaver, “Tight coupling between leaf area index and foliage N content in arctic plant communities”, Oecologia, vol. 142, no. 3, pp. 421-427, 2005. https://doi.org/10.1007/s00442-004-1733-x [3] I. Shaver et al., “Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions”, Glob. Environ. Chang., vol. 32, pp. 74-86, 2015. https://doi.org/10.1016/j.gloenvcha.2015.02.006 [4] I. Havinga, L. Hein, M. Vega-Araya, and A. Languillaume, “Spatial quantification to examine the effectiveness of payments for ecosystem services: A case study of Costa Rica’s Pago de Servicios Ambientales”, Ecol. Indic., vol. 108, 2020. https://doi.org/10.1016/j.ecolind.2019.105766 [5] J. Saporiti Machado, F. Pereira, and T. Quilhó, “Assessment of old timber members: Importance of wood species identification and direct tensile test information”, Constr. Build. Mater., vol. 207, pp. 651-660, 2019. https://doi.org/10.1016/j.conbuildmat.2019.02.168 [6] M. Fioravanti, G. Di Giulio, and G. Signorini, “A non-invasive approach to identifying wood species in historical musical instruments”, J. Cult. Herit., vol. 27, pp. S70-S77, 2017. https://doi.org/10.1016/j.culher.2016.05.012 [7] V. de Micco and G. Aronne, “Seasonal dimorphism in wood anatomy of the Mediterranean Cistus incanus L. subsp. incanus”, Trees - Struct. Funct., vol. 23, no. 5, pp. 981-989, 2009. https://doi.org/10.1007/s00468-009-0340-1 [8] K. Kobayashi, S.-W. Hwang, T. Okochi, W.-H. Lee, and J. Sugiyama, “Non-destructive method for wood identification using conventional X-ray computed tomography data”, J. Cult. Herit., vol. 38, pp. 88-93, 2019. https://doi.org/10.1016/j.culher.2019.02.001 [9] G. Giachi, M. C. Guidotti, S. Lazzeri, L. Sozzi, and N. Macchioni, “Wood identification of the headrests from the collection of the Egyptian Museum in Florence”, J. Archaeol. Sci. Reports, vol. 9, pp. 340-346, 2016. https://doi.org/10.1016/j.jasrep.2016.08.027 [10] A. Glabasnia, and T. Hofmann, “Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in bourbon whiskey and oak-matured red wines”, J. Agric. Food Chem., vol. 54, no. 9, pp. 3380-3390, 2006. https://doi.org/10.1021/jf052617b [11] F. Reinig et al., “Introducing anatomical techniques to subfossil wood”, Dendrochronologia, vol. 52, pp. 146-151, 2018. https://doi.org/10.1016/j.dendro.2018.10.005 [12] X. Tang, G. Zhao, and L. Ping, “Wood identification with PCR targeting noncoding chloroplast DNA”, Plant Mol. Biol., vol. 77, no. 6, pp. 609-617, 2011. https://doi.org/10.1007/s11103-011-9837-2 [13] D. A. Ayala-Usma, R. E. Lozano-Gutiérrez, and C. González Arango, “Wood anatomy of two species of the genus Chrysochlamys (Clusiaceae: Clusioideae: Clusieae) from the northern Andes of Colombia”, Heliyon, vol. 5, no. 7, 2019. https://doi.org/10.1016/j.heliyon.2019.e02078 [14] I. Malik, Ł. Pawlik, A. Ślęzak, and M. Wistuba, “A study of the wood anatomy of Picea abies roots and their role in biomechanical weathering of rock cracks”, Catena, vol. 173, pp. 264-275, 2019. https://doi.org/10.1016/j.catena.2018.10.018 [15] C. P. Pérez-Olvera y R. Dávalos-Sotelo, “Algunas características anatómicas y tecnológicas de la madera de 24 especies de Quercus (encinos) de México”, Madera y Bosques, vol. 14, no. 3, pp. 43-80, 2008. https://doi.org/10.21829/myb.2008.1431206 [16] V. De Micco, G. Aronne, and P. Baas, “Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient”, Trees - Struct. Funct., vol. 22, no. 5, pp. 643-655, 2008. https://doi.org/10.1007/s00468-008-0222-y [17] J. L. Marcelo-Peña, L. Santini, and M. Tomazello Filho, “Wood anatomy and growth rate of seasonally dry tropical forest trees in the Marañón River Valley, northern Peru”, Dendrochronologia, vol. 55, pp. 135-145, 2019. https://doi.org/10.1016/j.dendro.2019.04.008 [18] F. Ma, and A. Huang, “Rapid identification and quantification three chicken-wing woods of Millettia leucantha, Millettia laurentii and Cassia siamea by FT-IR and 2DCOS-IR”, J. Mol. Struct., vol. 1166, pp. 164-168, 2018. https://doi.org/10.1016/j.molstruc.2018.04.037 [19] A. Pacheco, J. J. Camarero, M. Pompa-García, G. Battipaglia, J. Voltas, and M. Carrer, “Growth, wood anatomy and stable isotopes show species-specific couplings in three Mexican conifers inhabiting drought-prone areas”, Sci. Total Environ., vol. 698, 2020. https://doi.org/10.1016/j.scitotenv.2019.134055 [20] I. G. Andrade Bueno et al., “Wood anatomy of field grown eucalypt genotypes exhibiting differential dieback and water deficit tolerance”, Curr. Plant Biol., vol. 22, 2020. https://doi.org/10.1016/j.cpb.2020.100136 [21] J. C. Valverde, D. Arias, E. Mata, G. Figueroa y N. Zamora. “Determinación de las condiciones fotográficas óptimas para la caracterización anatómica de diez especies maderables de Costa Rica“ Rev. Cubana Cien. For. vol. 8, no. 3, pp. 439-455, 2020. http://cfores.upr.edu.cu/index.php/cfores/article/view/613 [22] J. C. Valverde et al., “Identificación de patrones de reflectancia espectral y colorimétricos en madera seca de Peltogyne purpurea Pittier“ Rev. Cubana Cien. For. vol. 8, no. 2, pp. 262-281, 2020. [23] G. Figueroa, E. Mata, J. C. Valverde, and D. Arias. “Automated image-based identification of forest species: Challenges and opportunities for 21st century xylotheques“, IWOBI, vol. 1, 2018. https://doi.org/10.1109/IWOBI.2018.8464206 [24] G. Figueroa, E. Mata, J. C. Valverde, and D. Arias. “Evaluating the significance of cutting planes of wood samples when training CNNs for forest species identification“, CONCAPAN XXXVIII, vol. 1, 2018. https://doi.org/10.1109/CONCAPAN.2018.8596406 [25] J. C. Valverde, and D. Arias. “Variation of physiological parameters in juvenile treetops of Eucalyptus tereticornis from a three-dimensional perspective“. Esp. Rev. Multi. Inv, vol. 2, no. 23, 2018. https://doi.org/10.31876/re.v2i23.399 [26] ASTM. D2244 “Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates”, ASTM International, vol. 1, 2012. [27] W. Cui, P. Kamdem, and T. Rypstra. “Diffuse reflectance infrared Fourier transform spectroscopy (Drift) and color changes of artificial weathered wood”, Wood Fiber Sci, vol. 36, no. 3, pp. 291-301, 2004. [28] G. Figueroa, E. Mata, J. C. Valverde, and D. Arias. “using deep convolutional networks for species identification of xylotheque samples“, IWOBI, vol. 1, 2018.
https://revistas.udistrital.edu.co/index.php/reving/article/view/16503
op_rights Derechos de autor 2022 Juan Carlos Valverde, Dagoberto Arias, Geovanni Figueroa, Erick Mata, Nelson Zamora
https://creativecommons.org/licenses/by-nc-sa/4.0
op_doi https://doi.org/10.1016/j.ecolecon.2020.106659
container_title Ecological Economics
container_volume 174
container_start_page 106659
_version_ 1776197757119234048
spelling ftunivdfjcojs:oai:revistas.udistrital.edu.co:article/16503 2023-09-05T13:15:59+02:00 Validation of a Digital Photographic Protocol for Macroscopic Analysis of Wood Anatomy and Colorimetry of Tree Species in Costa Rica Validación de un protocolo fotográfico digital para análisis macroscópico de la anatomía y colorimetría en madera de especies arbóreas de Costa Rica Valverde, Juan Carlos Arias, Dagoberto Figueroa, Geovanni Mata, Erick Zamora, Nelson 2022-04-25 application/pdf text/xml https://revistas.udistrital.edu.co/index.php/reving/article/view/16503 spa eng spa eng Universidad Distrital Francisco José de Caldas https://revistas.udistrital.edu.co/index.php/reving/article/view/16503/18162 https://revistas.udistrital.edu.co/index.php/reving/article/view/16503/18471 K. Brownson, E. P. Anderson, S. Ferreira, S. Wenger, L. Fowler, and L. German, “Governance of payments for ecosystem services influences social and environmental outcomes in Costa Rica”, Ecol. Econ., vol. 174, 2020. https://doi.org/10.1016/j.ecolecon.2020.106659 [2] M. T. van Wijk, M. Williams, and G. R. Shaver, “Tight coupling between leaf area index and foliage N content in arctic plant communities”, Oecologia, vol. 142, no. 3, pp. 421-427, 2005. https://doi.org/10.1007/s00442-004-1733-x [3] I. Shaver et al., “Coupled social and ecological outcomes of agricultural intensification in Costa Rica and the future of biodiversity conservation in tropical agricultural regions”, Glob. Environ. Chang., vol. 32, pp. 74-86, 2015. https://doi.org/10.1016/j.gloenvcha.2015.02.006 [4] I. Havinga, L. Hein, M. Vega-Araya, and A. Languillaume, “Spatial quantification to examine the effectiveness of payments for ecosystem services: A case study of Costa Rica’s Pago de Servicios Ambientales”, Ecol. Indic., vol. 108, 2020. https://doi.org/10.1016/j.ecolind.2019.105766 [5] J. Saporiti Machado, F. Pereira, and T. Quilhó, “Assessment of old timber members: Importance of wood species identification and direct tensile test information”, Constr. Build. Mater., vol. 207, pp. 651-660, 2019. https://doi.org/10.1016/j.conbuildmat.2019.02.168 [6] M. Fioravanti, G. Di Giulio, and G. Signorini, “A non-invasive approach to identifying wood species in historical musical instruments”, J. Cult. Herit., vol. 27, pp. S70-S77, 2017. https://doi.org/10.1016/j.culher.2016.05.012 [7] V. de Micco and G. Aronne, “Seasonal dimorphism in wood anatomy of the Mediterranean Cistus incanus L. subsp. incanus”, Trees - Struct. Funct., vol. 23, no. 5, pp. 981-989, 2009. https://doi.org/10.1007/s00468-009-0340-1 [8] K. Kobayashi, S.-W. Hwang, T. Okochi, W.-H. Lee, and J. Sugiyama, “Non-destructive method for wood identification using conventional X-ray computed tomography data”, J. Cult. Herit., vol. 38, pp. 88-93, 2019. https://doi.org/10.1016/j.culher.2019.02.001 [9] G. Giachi, M. C. Guidotti, S. Lazzeri, L. Sozzi, and N. Macchioni, “Wood identification of the headrests from the collection of the Egyptian Museum in Florence”, J. Archaeol. Sci. Reports, vol. 9, pp. 340-346, 2016. https://doi.org/10.1016/j.jasrep.2016.08.027 [10] A. Glabasnia, and T. Hofmann, “Sensory-directed identification of taste-active ellagitannins in American (Quercus alba L.) and European oak wood (Quercus robur L.) and quantitative analysis in bourbon whiskey and oak-matured red wines”, J. Agric. Food Chem., vol. 54, no. 9, pp. 3380-3390, 2006. https://doi.org/10.1021/jf052617b [11] F. Reinig et al., “Introducing anatomical techniques to subfossil wood”, Dendrochronologia, vol. 52, pp. 146-151, 2018. https://doi.org/10.1016/j.dendro.2018.10.005 [12] X. Tang, G. Zhao, and L. Ping, “Wood identification with PCR targeting noncoding chloroplast DNA”, Plant Mol. Biol., vol. 77, no. 6, pp. 609-617, 2011. https://doi.org/10.1007/s11103-011-9837-2 [13] D. A. Ayala-Usma, R. E. Lozano-Gutiérrez, and C. González Arango, “Wood anatomy of two species of the genus Chrysochlamys (Clusiaceae: Clusioideae: Clusieae) from the northern Andes of Colombia”, Heliyon, vol. 5, no. 7, 2019. https://doi.org/10.1016/j.heliyon.2019.e02078 [14] I. Malik, Ł. Pawlik, A. Ślęzak, and M. Wistuba, “A study of the wood anatomy of Picea abies roots and their role in biomechanical weathering of rock cracks”, Catena, vol. 173, pp. 264-275, 2019. https://doi.org/10.1016/j.catena.2018.10.018 [15] C. P. Pérez-Olvera y R. Dávalos-Sotelo, “Algunas características anatómicas y tecnológicas de la madera de 24 especies de Quercus (encinos) de México”, Madera y Bosques, vol. 14, no. 3, pp. 43-80, 2008. https://doi.org/10.21829/myb.2008.1431206 [16] V. De Micco, G. Aronne, and P. Baas, “Wood anatomy and hydraulic architecture of stems and twigs of some Mediterranean trees and shrubs along a mesic-xeric gradient”, Trees - Struct. Funct., vol. 22, no. 5, pp. 643-655, 2008. https://doi.org/10.1007/s00468-008-0222-y [17] J. L. Marcelo-Peña, L. Santini, and M. Tomazello Filho, “Wood anatomy and growth rate of seasonally dry tropical forest trees in the Marañón River Valley, northern Peru”, Dendrochronologia, vol. 55, pp. 135-145, 2019. https://doi.org/10.1016/j.dendro.2019.04.008 [18] F. Ma, and A. Huang, “Rapid identification and quantification three chicken-wing woods of Millettia leucantha, Millettia laurentii and Cassia siamea by FT-IR and 2DCOS-IR”, J. Mol. Struct., vol. 1166, pp. 164-168, 2018. https://doi.org/10.1016/j.molstruc.2018.04.037 [19] A. Pacheco, J. J. Camarero, M. Pompa-García, G. Battipaglia, J. Voltas, and M. Carrer, “Growth, wood anatomy and stable isotopes show species-specific couplings in three Mexican conifers inhabiting drought-prone areas”, Sci. Total Environ., vol. 698, 2020. https://doi.org/10.1016/j.scitotenv.2019.134055 [20] I. G. Andrade Bueno et al., “Wood anatomy of field grown eucalypt genotypes exhibiting differential dieback and water deficit tolerance”, Curr. Plant Biol., vol. 22, 2020. https://doi.org/10.1016/j.cpb.2020.100136 [21] J. C. Valverde, D. Arias, E. Mata, G. Figueroa y N. Zamora. “Determinación de las condiciones fotográficas óptimas para la caracterización anatómica de diez especies maderables de Costa Rica“ Rev. Cubana Cien. For. vol. 8, no. 3, pp. 439-455, 2020. http://cfores.upr.edu.cu/index.php/cfores/article/view/613 [22] J. C. Valverde et al., “Identificación de patrones de reflectancia espectral y colorimétricos en madera seca de Peltogyne purpurea Pittier“ Rev. Cubana Cien. For. vol. 8, no. 2, pp. 262-281, 2020. [23] G. Figueroa, E. Mata, J. C. Valverde, and D. Arias. “Automated image-based identification of forest species: Challenges and opportunities for 21st century xylotheques“, IWOBI, vol. 1, 2018. https://doi.org/10.1109/IWOBI.2018.8464206 [24] G. Figueroa, E. Mata, J. C. Valverde, and D. Arias. “Evaluating the significance of cutting planes of wood samples when training CNNs for forest species identification“, CONCAPAN XXXVIII, vol. 1, 2018. https://doi.org/10.1109/CONCAPAN.2018.8596406 [25] J. C. Valverde, and D. Arias. “Variation of physiological parameters in juvenile treetops of Eucalyptus tereticornis from a three-dimensional perspective“. Esp. Rev. Multi. Inv, vol. 2, no. 23, 2018. https://doi.org/10.31876/re.v2i23.399 [26] ASTM. D2244 “Standard Practice for Calculation of Color Tolerances and Color Differences from Instrumentally Measured Color Coordinates”, ASTM International, vol. 1, 2012. [27] W. Cui, P. Kamdem, and T. Rypstra. “Diffuse reflectance infrared Fourier transform spectroscopy (Drift) and color changes of artificial weathered wood”, Wood Fiber Sci, vol. 36, no. 3, pp. 291-301, 2004. [28] G. Figueroa, E. Mata, J. C. Valverde, and D. Arias. “using deep convolutional networks for species identification of xylotheque samples“, IWOBI, vol. 1, 2018. https://revistas.udistrital.edu.co/index.php/reving/article/view/16503 Derechos de autor 2022 Juan Carlos Valverde, Dagoberto Arias, Geovanni Figueroa, Erick Mata, Nelson Zamora https://creativecommons.org/licenses/by-nc-sa/4.0 Ingeniería; Vol. 27 No. 2 (2022): May-August; e16503 Ingeniería; Vol. 27 Núm. 2 (2022): Mayo-agosto; e16503 2344-8393 0121-750X natural forest wood anatomy CIELAB bosque natural anatomía de la madera info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Article Artículo 2022 ftunivdfjcojs https://doi.org/10.1016/j.ecolecon.2020.106659 2023-08-21T15:22:13Z Context: The process of digitizing wood samples for identification and study has become relevant over the past decade, so it is necessary to consider the photographic aspects that generate representation of the images with respect to the physical sample. Method: Ten woodable species were used with no less than 10 sampled trees, from each individual five 10 mm edge wooden cubes were ex-brought and photographed with a stereoscope with a 20X under four luminosity protocols. In the process, the variation in color (under the coordinates L*, a* and b*), color differential (E*) and chroma (C*), in addition to the density and diameter of vessels, was evaluated. Results: The results showed that the brightness of 50% showed the greatest similarity to the colorimetry of the wood, obtaining values of E* less than 6 in all species and values of C* within the optimal range of 5 to 7. With respect to the anatomical part, the same behavior was given with the ten species, finding that the luminosity treatments at 25 and 50 % showed no significative differences, while the luminosities of 75 and 100% tended to underestimate the value. Conclusions: The treatment luminosity at 25% is ineffective by the darkening of the surface, while exposures to 75 and 100% tended to clarify the surface area and underestimate anatomical characteristics. Contexto: El proceso de digitalización de muestras de madera para su identificación y estudio ha tomado relevancia en la última década, por lo que es necesario considerar los aspectos fotográficos que generen representatividad de las imágenes con respecto a la muestra física. Método: Se utilizaron diez especies maderables con no menos de 10 árboles muestreados, de cada individuo se extrajeron cinco cubos de madera de 10 mm de arista y se fotografiaron con un estereoscopio con un aumento de 20X bajo cuatro protocolos de luminosidad. En el proceso se evaluó la variación del color (bajo las coordenadas L*, a* y b*), diferencial de color (ΔE*) y chroma (ΔC*), además de la densidad y diámetro de vasos. ... Article in Journal/Newspaper Arctic Universidad Distrital Francisco José de Caldas, Centro de Investigaciones y Desarrollo Científico: Sistema de revistas científicas Ecological Economics 174 106659