Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo.
The darkening effects of biological impurities on ice and snow have been recognised as a control on the surface energy balance of terrestrial snow, sea ice, glaciers and ice sheets. With a heightened interest in understanding the impacts of a changing climate on snow and ice processes, quantifying t...
Published in: | The Cryosphere |
---|---|
Main Authors: | , , , , , , , , , |
Other Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | unknown |
Published: |
Copernicus Publications
2017
|
Subjects: | |
Online Access: | https://doi.org/10.5194/tc-11-2611-2017 https://repository.derby.ac.uk/download/c66e95f032df6c733aa37b1245896da7aee22f62703e8b2b89a4b9771103a03c/1689/license.txt https://repository.derby.ac.uk/download/9b3541aade626c01e8cafa6c3bb6bb769757fc0bd995fdffae98f81fbea82f84/2998229/Cook_2017_Quantifying_bioalbedo_published_CCBY.pdf |
id |
ftunivderby:oai:repository.derby.ac.uk:932y3 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
UDORA - The University of Derby Online Research Archive |
op_collection_id |
ftunivderby |
language |
unknown |
topic |
Albedo Glaciology Glacier change |
spellingShingle |
Albedo Glaciology Glacier change Cook, J. M. Hodson, Andrew J. Flanner, Mark Gardner, Alex Tedstone, Andrew Williamson, Christopher Irvine-Fynn, Tristram D. L. Nilsson, Johan Bryant, Robert Tranter, Martyn Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. |
topic_facet |
Albedo Glaciology Glacier change |
description |
The darkening effects of biological impurities on ice and snow have been recognised as a control on the surface energy balance of terrestrial snow, sea ice, glaciers and ice sheets. With a heightened interest in understanding the impacts of a changing climate on snow and ice processes, quantifying the impact of biological impurities on ice and snow albedo (bioalbedo) and its evolution through time is a rapidly growing field of research. However, rigorous quantification of bioalbedo has remained elusive because of difficulties in isolating the biological contribution to ice albedo from that of inorganic impurities and the variable optical properties of the ice itself. For this reason, isolation of the biological signature in reflectance data obtained from aerial/orbital platforms has not been achieved, even when ground-based biological measurements have been available. This paper provides the cell-specific optical properties that are required to model the spectral signatures and broadband darkening of ice. Applying radiative transfer theory, these properties provide the physical basis needed to link biological and glaciological ground measurements with remotely sensed reflectance data. Using these new capabilities we confirm that biological impurities can influence ice albedo, then we identify 10 challenges to the measurement of bioalbedo in the field with the aim of improving future experimental designs to better quantify bioalbedo feedbacks. These challenges are (1) ambiguity in terminology, (2) characterising snow or ice optical properties, (3) characterising solar irradiance, (4) determining optical properties of cells, (5) measuring biomass, (6) characterising vertical distribution of cells, (7) characterising abiotic impurities, (8) surface anisotropy, (9) measuring indirect albedo feedbacks, and (10) measurement and instrument configurations. This paper aims to provide a broad audience of glaciologists and biologists with an overview of radiative transfer and albedo that could support future experimental ... |
author2 |
University of Sheffield University of Derby University Centre in Svalbard California Institute of Technology University of Michigan University of Bristol Aberystwyth University |
format |
Article in Journal/Newspaper |
author |
Cook, J. M. Hodson, Andrew J. Flanner, Mark Gardner, Alex Tedstone, Andrew Williamson, Christopher Irvine-Fynn, Tristram D. L. Nilsson, Johan Bryant, Robert Tranter, Martyn |
author_facet |
Cook, J. M. Hodson, Andrew J. Flanner, Mark Gardner, Alex Tedstone, Andrew Williamson, Christopher Irvine-Fynn, Tristram D. L. Nilsson, Johan Bryant, Robert Tranter, Martyn |
author_sort |
Cook, J. M. |
title |
Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. |
title_short |
Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. |
title_full |
Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. |
title_fullStr |
Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. |
title_full_unstemmed |
Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. |
title_sort |
quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. |
publisher |
Copernicus Publications |
publishDate |
2017 |
url |
https://doi.org/10.5194/tc-11-2611-2017 https://repository.derby.ac.uk/download/c66e95f032df6c733aa37b1245896da7aee22f62703e8b2b89a4b9771103a03c/1689/license.txt https://repository.derby.ac.uk/download/9b3541aade626c01e8cafa6c3bb6bb769757fc0bd995fdffae98f81fbea82f84/2998229/Cook_2017_Quantifying_bioalbedo_published_CCBY.pdf |
genre |
Sea ice The Cryosphere |
genre_facet |
Sea ice The Cryosphere |
op_relation |
https://repository.derby.ac.uk/item/932y3/quantifying-bioalbedo-a-new-physically-based-model-and-discussion-of-empirical-methods-for-characterising-biological-influence-on-ice-and-snow-albedo ISSN:19940424 https://repository.derby.ac.uk/download/c66e95f032df6c733aa37b1245896da7aee22f62703e8b2b89a4b9771103a03c/1689/license.txt https://repository.derby.ac.uk/download/9b3541aade626c01e8cafa6c3bb6bb769757fc0bd995fdffae98f81fbea82f84/2998229/Cook_2017_Quantifying_bioalbedo_published_CCBY.pdf https://doi.org/10.5194/tc-11-2611-2017 Cook, J. M., Hodson, Andrew J., Flanner, Mark, Gardner, Alex, Tedstone, Andrew, Williamson, Christopher, Irvine-Fynn, Tristram D. L., Nilsson, Johan, Bryant, Robert and Tranter, Martyn 2017. Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. The Cryosphere. https://doi.org/10.5194/tc-11-2611-2017 |
op_doi |
https://doi.org/10.5194/tc-11-2611-2017 |
container_title |
The Cryosphere |
container_volume |
11 |
container_issue |
6 |
container_start_page |
2611 |
op_container_end_page |
2632 |
_version_ |
1768375048933998592 |
spelling |
ftunivderby:oai:repository.derby.ac.uk:932y3 2023-06-11T04:16:38+02:00 Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. Cook, J. M. Hodson, Andrew J. Flanner, Mark Gardner, Alex Tedstone, Andrew Williamson, Christopher Irvine-Fynn, Tristram D. L. Nilsson, Johan Bryant, Robert Tranter, Martyn University of Sheffield University of Derby University Centre in Svalbard California Institute of Technology University of Michigan University of Bristol Aberystwyth University 2017 application/octet-stream application/pdf https://doi.org/10.5194/tc-11-2611-2017 https://repository.derby.ac.uk/download/c66e95f032df6c733aa37b1245896da7aee22f62703e8b2b89a4b9771103a03c/1689/license.txt https://repository.derby.ac.uk/download/9b3541aade626c01e8cafa6c3bb6bb769757fc0bd995fdffae98f81fbea82f84/2998229/Cook_2017_Quantifying_bioalbedo_published_CCBY.pdf unknown Copernicus Publications https://repository.derby.ac.uk/item/932y3/quantifying-bioalbedo-a-new-physically-based-model-and-discussion-of-empirical-methods-for-characterising-biological-influence-on-ice-and-snow-albedo ISSN:19940424 https://repository.derby.ac.uk/download/c66e95f032df6c733aa37b1245896da7aee22f62703e8b2b89a4b9771103a03c/1689/license.txt https://repository.derby.ac.uk/download/9b3541aade626c01e8cafa6c3bb6bb769757fc0bd995fdffae98f81fbea82f84/2998229/Cook_2017_Quantifying_bioalbedo_published_CCBY.pdf https://doi.org/10.5194/tc-11-2611-2017 Cook, J. M., Hodson, Andrew J., Flanner, Mark, Gardner, Alex, Tedstone, Andrew, Williamson, Christopher, Irvine-Fynn, Tristram D. L., Nilsson, Johan, Bryant, Robert and Tranter, Martyn 2017. Quantifying bioalbedo: a new physically based model and discussion of empirical methods for characterising biological influence on ice and snow albedo. The Cryosphere. https://doi.org/10.5194/tc-11-2611-2017 Albedo Glaciology Glacier change journal-article 2017 ftunivderby https://doi.org/10.5194/tc-11-2611-2017 2023-05-08T13:34:00Z The darkening effects of biological impurities on ice and snow have been recognised as a control on the surface energy balance of terrestrial snow, sea ice, glaciers and ice sheets. With a heightened interest in understanding the impacts of a changing climate on snow and ice processes, quantifying the impact of biological impurities on ice and snow albedo (bioalbedo) and its evolution through time is a rapidly growing field of research. However, rigorous quantification of bioalbedo has remained elusive because of difficulties in isolating the biological contribution to ice albedo from that of inorganic impurities and the variable optical properties of the ice itself. For this reason, isolation of the biological signature in reflectance data obtained from aerial/orbital platforms has not been achieved, even when ground-based biological measurements have been available. This paper provides the cell-specific optical properties that are required to model the spectral signatures and broadband darkening of ice. Applying radiative transfer theory, these properties provide the physical basis needed to link biological and glaciological ground measurements with remotely sensed reflectance data. Using these new capabilities we confirm that biological impurities can influence ice albedo, then we identify 10 challenges to the measurement of bioalbedo in the field with the aim of improving future experimental designs to better quantify bioalbedo feedbacks. These challenges are (1) ambiguity in terminology, (2) characterising snow or ice optical properties, (3) characterising solar irradiance, (4) determining optical properties of cells, (5) measuring biomass, (6) characterising vertical distribution of cells, (7) characterising abiotic impurities, (8) surface anisotropy, (9) measuring indirect albedo feedbacks, and (10) measurement and instrument configurations. This paper aims to provide a broad audience of glaciologists and biologists with an overview of radiative transfer and albedo that could support future experimental ... Article in Journal/Newspaper Sea ice The Cryosphere UDORA - The University of Derby Online Research Archive The Cryosphere 11 6 2611 2632 |