Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania)

International audience The use of geographic knowledge in remote sensing constitutes one of the fundamental base of the methodologies of image processing. Image processing, image analysis, and oriented-object recognition are based on the geographic knowledge. More specifically, the large panel of su...

Full description

Bibliographic Details
Published in:Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management
Main Authors: Gadal, Sébastien, Ouerghemmi, Walid
Other Authors: Aix Marseille Université (AMU), Étude des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE), Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA), CNES CES THEIA Artificialisation et Urbanisation, INSTICC, University of Crete, IEEE GRSS, ACM SIGSPATIAL, Cédric Grueau, Robert Laurini, Lemonia Ragia, ANR-15-CE22-0006,PUR,Pôles URbains(2015), ANR-14-CE22-0016,HYEP,Imagerie hyperspectrale pour la planification urbaine environnementale(2014), ANR-10-EQPX-0020,GEOSUD,GEOSUD : Infrastructure nationale d'imagerie satellitaire pour la recherche sur l'environnement et les territoires et ses applications à la gestion et aux politiques publiques(2010)
Format: Conference Object
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://amu.hal.science/hal-02120100
https://amu.hal.science/hal-02120100/document
https://amu.hal.science/hal-02120100/file/article2_HAL.pdf
https://doi.org/10.5220/0007752202820288
_version_ 1821825727765413888
author Gadal, Sébastien
Ouerghemmi, Walid
author2 Aix Marseille Université (AMU)
Étude des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
CNES CES THEIA Artificialisation et Urbanisation
INSTICC
University of Crete
IEEE GRSS
ACM SIGSPATIAL
Cédric Grueau
Robert Laurini
Lemonia Ragia
ANR-15-CE22-0006,PUR,Pôles URbains(2015)
ANR-14-CE22-0016,HYEP,Imagerie hyperspectrale pour la planification urbaine environnementale(2014)
ANR-10-EQPX-0020,GEOSUD,GEOSUD : Infrastructure nationale d'imagerie satellitaire pour la recherche sur l'environnement et les territoires et ses applications à la gestion et aux politiques publiques(2010)
author_facet Gadal, Sébastien
Ouerghemmi, Walid
author_sort Gadal, Sébastien
collection HAL Université Côte d'Azur
container_start_page 282
container_title Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management
description International audience The use of geographic knowledge in remote sensing constitutes one of the fundamental base of the methodologies of image processing. Image processing, image analysis, and oriented-object recognition are based on the geographic knowledge. More specifically, the large panel of supervised classifications methods are one of the main example where geographic knowledge is necessary for both algorithms training and results validation. Recently, with the coming back of the artificial intelligence (AI) wave, it appears that a large spectrum of usually employed methodologies in remote sensing and image processing, are one of the main drivers of AI: machine learning, deep learning are the most effective’s examples. As well as many based processing algorithms like the Support Vector Machine (SVM) or the Random Forest (RF). However, despite the constant performances of the methods of calculus; the geographic knowledge’s determines the accuracy of recognition and classification in image processing and spatial modelling generated. In regard of the fast seasonal and annual landscape changes in the Arctic climate, and complex urban structures, Yakutsk and Kaunas cities contribute to the reflexion.
format Conference Object
genre Arctic
Yakutsk
genre_facet Arctic
Yakutsk
geographic Arctic
Yakutsk
geographic_facet Arctic
Yakutsk
id ftunivcotedazur:oai:HAL:hal-02120100v1
institution Open Polar
language English
op_collection_id ftunivcotedazur
op_container_end_page 288
op_coverage Heraklion, Greece
op_doi https://doi.org/10.5220/0007752202820288
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5220/0007752202820288
hal-02120100
https://amu.hal.science/hal-02120100
https://amu.hal.science/hal-02120100/document
https://amu.hal.science/hal-02120100/file/article2_HAL.pdf
doi:10.5220/0007752202820288
op_rights info:eu-repo/semantics/OpenAccess
op_source 5th International Conference on Geographical Information Systems Theory, Applications and Management
https://amu.hal.science/hal-02120100
5th International Conference on Geographical Information Systems Theory, Applications and Management, INSTICC; University of Crete; IEEE GRSS; ACM SIGSPATIAL, May 2019, Heraklion, Greece. pp.282-288, ⟨10.5220/0007752202820288⟩
http://www.gistam.org/
publishDate 2019
publisher HAL CCSD
record_format openpolar
spelling ftunivcotedazur:oai:HAL:hal-02120100v1 2025-01-16T20:30:35+00:00 Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania) Gadal, Sébastien Ouerghemmi, Walid Aix Marseille Université (AMU) Étude des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE) Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA) CNES CES THEIA Artificialisation et Urbanisation INSTICC University of Crete IEEE GRSS ACM SIGSPATIAL Cédric Grueau Robert Laurini Lemonia Ragia ANR-15-CE22-0006,PUR,Pôles URbains(2015) ANR-14-CE22-0016,HYEP,Imagerie hyperspectrale pour la planification urbaine environnementale(2014) ANR-10-EQPX-0020,GEOSUD,GEOSUD : Infrastructure nationale d'imagerie satellitaire pour la recherche sur l'environnement et les territoires et ses applications à la gestion et aux politiques publiques(2010) Heraklion, Greece 2019-05-03 https://amu.hal.science/hal-02120100 https://amu.hal.science/hal-02120100/document https://amu.hal.science/hal-02120100/file/article2_HAL.pdf https://doi.org/10.5220/0007752202820288 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.5220/0007752202820288 hal-02120100 https://amu.hal.science/hal-02120100 https://amu.hal.science/hal-02120100/document https://amu.hal.science/hal-02120100/file/article2_HAL.pdf doi:10.5220/0007752202820288 info:eu-repo/semantics/OpenAccess 5th International Conference on Geographical Information Systems Theory, Applications and Management https://amu.hal.science/hal-02120100 5th International Conference on Geographical Information Systems Theory, Applications and Management, INSTICC; University of Crete; IEEE GRSS; ACM SIGSPATIAL, May 2019, Heraklion, Greece. pp.282-288, ⟨10.5220/0007752202820288⟩ http://www.gistam.org/ Russia Kaunas Arctic Lithuania Temporal Analysis Yakutsk Artificial Intelligence Geographic Knowledge Remote Sensing Spectral Databases Morphometric attributes Geographic Ontologies [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [SHS.STAT]Humanities and Social Sciences/Methods and statistics [SDE.ES]Environmental Sciences/Environment and Society [SHS.GEO]Humanities and Social Sciences/Geography [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation info:eu-repo/semantics/conferenceObject Conference papers 2019 ftunivcotedazur https://doi.org/10.5220/0007752202820288 2024-03-21T18:09:26Z International audience The use of geographic knowledge in remote sensing constitutes one of the fundamental base of the methodologies of image processing. Image processing, image analysis, and oriented-object recognition are based on the geographic knowledge. More specifically, the large panel of supervised classifications methods are one of the main example where geographic knowledge is necessary for both algorithms training and results validation. Recently, with the coming back of the artificial intelligence (AI) wave, it appears that a large spectrum of usually employed methodologies in remote sensing and image processing, are one of the main drivers of AI: machine learning, deep learning are the most effective’s examples. As well as many based processing algorithms like the Support Vector Machine (SVM) or the Random Forest (RF). However, despite the constant performances of the methods of calculus; the geographic knowledge’s determines the accuracy of recognition and classification in image processing and spatial modelling generated. In regard of the fast seasonal and annual landscape changes in the Arctic climate, and complex urban structures, Yakutsk and Kaunas cities contribute to the reflexion. Conference Object Arctic Yakutsk HAL Université Côte d'Azur Arctic Yakutsk Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management 282 288
spellingShingle Russia
Kaunas
Arctic
Lithuania
Temporal Analysis
Yakutsk
Artificial Intelligence
Geographic Knowledge
Remote Sensing
Spectral Databases
Morphometric attributes
Geographic Ontologies
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
Gadal, Sébastien
Ouerghemmi, Walid
Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania)
title Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania)
title_full Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania)
title_fullStr Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania)
title_full_unstemmed Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania)
title_short Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania)
title_sort knowledge models and image processing analysis in remote sensing: examples of yakutsk (russia) and kaunas (lithuania)
topic Russia
Kaunas
Arctic
Lithuania
Temporal Analysis
Yakutsk
Artificial Intelligence
Geographic Knowledge
Remote Sensing
Spectral Databases
Morphometric attributes
Geographic Ontologies
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
topic_facet Russia
Kaunas
Arctic
Lithuania
Temporal Analysis
Yakutsk
Artificial Intelligence
Geographic Knowledge
Remote Sensing
Spectral Databases
Morphometric attributes
Geographic Ontologies
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
url https://amu.hal.science/hal-02120100
https://amu.hal.science/hal-02120100/document
https://amu.hal.science/hal-02120100/file/article2_HAL.pdf
https://doi.org/10.5220/0007752202820288