Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania)
International audience The use of geographic knowledge in remote sensing constitutes one of the fundamental base of the methodologies of image processing. Image processing, image analysis, and oriented-object recognition are based on the geographic knowledge. More specifically, the large panel of su...
Published in: | Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management |
---|---|
Main Authors: | , |
Other Authors: | , , , , , , , , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
HAL CCSD
2019
|
Subjects: | |
Online Access: | https://amu.hal.science/hal-02120100 https://amu.hal.science/hal-02120100/document https://amu.hal.science/hal-02120100/file/article2_HAL.pdf https://doi.org/10.5220/0007752202820288 |
id |
ftunivcotedazur:oai:HAL:hal-02120100v1 |
---|---|
record_format |
openpolar |
spelling |
ftunivcotedazur:oai:HAL:hal-02120100v1 2024-04-14T08:07:31+00:00 Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania) Gadal, Sébastien Ouerghemmi, Walid Aix Marseille Université (AMU) Étude des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE) Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA) CNES CES THEIA Artificialisation et Urbanisation INSTICC University of Crete IEEE GRSS ACM SIGSPATIAL Cédric Grueau Robert Laurini Lemonia Ragia ANR-15-CE22-0006,PUR,Pôles URbains(2015) ANR-14-CE22-0016,HYEP,Imagerie hyperspectrale pour la planification urbaine environnementale(2014) ANR-10-EQPX-0020,GEOSUD,GEOSUD : Infrastructure nationale d'imagerie satellitaire pour la recherche sur l'environnement et les territoires et ses applications à la gestion et aux politiques publiques(2010) Heraklion, Greece 2019-05-03 https://amu.hal.science/hal-02120100 https://amu.hal.science/hal-02120100/document https://amu.hal.science/hal-02120100/file/article2_HAL.pdf https://doi.org/10.5220/0007752202820288 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.5220/0007752202820288 hal-02120100 https://amu.hal.science/hal-02120100 https://amu.hal.science/hal-02120100/document https://amu.hal.science/hal-02120100/file/article2_HAL.pdf doi:10.5220/0007752202820288 info:eu-repo/semantics/OpenAccess 5th International Conference on Geographical Information Systems Theory, Applications and Management https://amu.hal.science/hal-02120100 5th International Conference on Geographical Information Systems Theory, Applications and Management, INSTICC; University of Crete; IEEE GRSS; ACM SIGSPATIAL, May 2019, Heraklion, Greece. pp.282-288, ⟨10.5220/0007752202820288⟩ http://www.gistam.org/ Russia Kaunas Arctic Lithuania Temporal Analysis Yakutsk Artificial Intelligence Geographic Knowledge Remote Sensing Spectral Databases Morphometric attributes Geographic Ontologies [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [SHS.STAT]Humanities and Social Sciences/Methods and statistics [SDE.ES]Environmental Sciences/Environment and Society [SHS.GEO]Humanities and Social Sciences/Geography [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation info:eu-repo/semantics/conferenceObject Conference papers 2019 ftunivcotedazur https://doi.org/10.5220/0007752202820288 2024-03-21T18:09:26Z International audience The use of geographic knowledge in remote sensing constitutes one of the fundamental base of the methodologies of image processing. Image processing, image analysis, and oriented-object recognition are based on the geographic knowledge. More specifically, the large panel of supervised classifications methods are one of the main example where geographic knowledge is necessary for both algorithms training and results validation. Recently, with the coming back of the artificial intelligence (AI) wave, it appears that a large spectrum of usually employed methodologies in remote sensing and image processing, are one of the main drivers of AI: machine learning, deep learning are the most effective’s examples. As well as many based processing algorithms like the Support Vector Machine (SVM) or the Random Forest (RF). However, despite the constant performances of the methods of calculus; the geographic knowledge’s determines the accuracy of recognition and classification in image processing and spatial modelling generated. In regard of the fast seasonal and annual landscape changes in the Arctic climate, and complex urban structures, Yakutsk and Kaunas cities contribute to the reflexion. Conference Object Arctic Yakutsk HAL Université Côte d'Azur Arctic Yakutsk Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management 282 288 |
institution |
Open Polar |
collection |
HAL Université Côte d'Azur |
op_collection_id |
ftunivcotedazur |
language |
English |
topic |
Russia Kaunas Arctic Lithuania Temporal Analysis Yakutsk Artificial Intelligence Geographic Knowledge Remote Sensing Spectral Databases Morphometric attributes Geographic Ontologies [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [SHS.STAT]Humanities and Social Sciences/Methods and statistics [SDE.ES]Environmental Sciences/Environment and Society [SHS.GEO]Humanities and Social Sciences/Geography [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation |
spellingShingle |
Russia Kaunas Arctic Lithuania Temporal Analysis Yakutsk Artificial Intelligence Geographic Knowledge Remote Sensing Spectral Databases Morphometric attributes Geographic Ontologies [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [SHS.STAT]Humanities and Social Sciences/Methods and statistics [SDE.ES]Environmental Sciences/Environment and Society [SHS.GEO]Humanities and Social Sciences/Geography [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation Gadal, Sébastien Ouerghemmi, Walid Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania) |
topic_facet |
Russia Kaunas Arctic Lithuania Temporal Analysis Yakutsk Artificial Intelligence Geographic Knowledge Remote Sensing Spectral Databases Morphometric attributes Geographic Ontologies [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [SHS.STAT]Humanities and Social Sciences/Methods and statistics [SDE.ES]Environmental Sciences/Environment and Society [SHS.GEO]Humanities and Social Sciences/Geography [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation |
description |
International audience The use of geographic knowledge in remote sensing constitutes one of the fundamental base of the methodologies of image processing. Image processing, image analysis, and oriented-object recognition are based on the geographic knowledge. More specifically, the large panel of supervised classifications methods are one of the main example where geographic knowledge is necessary for both algorithms training and results validation. Recently, with the coming back of the artificial intelligence (AI) wave, it appears that a large spectrum of usually employed methodologies in remote sensing and image processing, are one of the main drivers of AI: machine learning, deep learning are the most effective’s examples. As well as many based processing algorithms like the Support Vector Machine (SVM) or the Random Forest (RF). However, despite the constant performances of the methods of calculus; the geographic knowledge’s determines the accuracy of recognition and classification in image processing and spatial modelling generated. In regard of the fast seasonal and annual landscape changes in the Arctic climate, and complex urban structures, Yakutsk and Kaunas cities contribute to the reflexion. |
author2 |
Aix Marseille Université (AMU) Étude des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE) Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA) CNES CES THEIA Artificialisation et Urbanisation INSTICC University of Crete IEEE GRSS ACM SIGSPATIAL Cédric Grueau Robert Laurini Lemonia Ragia ANR-15-CE22-0006,PUR,Pôles URbains(2015) ANR-14-CE22-0016,HYEP,Imagerie hyperspectrale pour la planification urbaine environnementale(2014) ANR-10-EQPX-0020,GEOSUD,GEOSUD : Infrastructure nationale d'imagerie satellitaire pour la recherche sur l'environnement et les territoires et ses applications à la gestion et aux politiques publiques(2010) |
format |
Conference Object |
author |
Gadal, Sébastien Ouerghemmi, Walid |
author_facet |
Gadal, Sébastien Ouerghemmi, Walid |
author_sort |
Gadal, Sébastien |
title |
Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania) |
title_short |
Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania) |
title_full |
Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania) |
title_fullStr |
Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania) |
title_full_unstemmed |
Knowledge Models and Image Processing Analysis in Remote Sensing: Examples of Yakutsk (Russia) and Kaunas (Lithuania) |
title_sort |
knowledge models and image processing analysis in remote sensing: examples of yakutsk (russia) and kaunas (lithuania) |
publisher |
HAL CCSD |
publishDate |
2019 |
url |
https://amu.hal.science/hal-02120100 https://amu.hal.science/hal-02120100/document https://amu.hal.science/hal-02120100/file/article2_HAL.pdf https://doi.org/10.5220/0007752202820288 |
op_coverage |
Heraklion, Greece |
geographic |
Arctic Yakutsk |
geographic_facet |
Arctic Yakutsk |
genre |
Arctic Yakutsk |
genre_facet |
Arctic Yakutsk |
op_source |
5th International Conference on Geographical Information Systems Theory, Applications and Management https://amu.hal.science/hal-02120100 5th International Conference on Geographical Information Systems Theory, Applications and Management, INSTICC; University of Crete; IEEE GRSS; ACM SIGSPATIAL, May 2019, Heraklion, Greece. pp.282-288, ⟨10.5220/0007752202820288⟩ http://www.gistam.org/ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.5220/0007752202820288 hal-02120100 https://amu.hal.science/hal-02120100 https://amu.hal.science/hal-02120100/document https://amu.hal.science/hal-02120100/file/article2_HAL.pdf doi:10.5220/0007752202820288 |
op_rights |
info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.5220/0007752202820288 |
container_title |
Proceedings of the 5th International Conference on Geographical Information Systems Theory, Applications and Management |
container_start_page |
282 |
op_container_end_page |
288 |
_version_ |
1796304923117223936 |