The angular kernel in machine learning for hyperspectral data classification

International audience Support vector machines have been investigated with success for hyperspectral data classification. In this paper, we propose a new kernel to measure spectral similarity, called the angular kernel. We provide some of its properties, such as its invariance to illumination energy...

Full description

Bibliographic Details
Published in:2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
Main Authors: Honeine, Paul, Richard, Cédric
Other Authors: Laboratoire Modélisation et Sûreté des Systèmes (LM2S), Institut Charles Delaunay (ICD), Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Hippolyte Fizeau (FIZEAU), Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur, Université Côte d'Azur (UniCA)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)
Format: Conference Object
Language:English
Published: HAL CCSD 2010
Subjects:
Online Access:https://hal.science/hal-01966042
https://hal.science/hal-01966042v1/document
https://hal.science/hal-01966042v1/file/10.angular.pdf
https://doi.org/10.1109/WHISPERS.2010.5594908
_version_ 1821554730861592576
author Honeine, Paul
Richard, Cédric
author2 Laboratoire Modélisation et Sûreté des Systèmes (LM2S)
Institut Charles Delaunay (ICD)
Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Hippolyte Fizeau (FIZEAU)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur
Université Côte d'Azur (UniCA)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS)
author_facet Honeine, Paul
Richard, Cédric
author_sort Honeine, Paul
collection HAL Université Côte d'Azur
container_start_page 1
container_title 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing
description International audience Support vector machines have been investigated with success for hyperspectral data classification. In this paper, we propose a new kernel to measure spectral similarity, called the angular kernel. We provide some of its properties, such as its invariance to illumination energy, as well as connection to previous work. Furthermore, we show that the performance of a classifier associated to the angular kernel is comparable to the Gaussian kernel, in the sense of universality. We derive a class of kernels based on the angular kernel, and study the performance on an urban classification task.
format Conference Object
genre Iceland
genre_facet Iceland
id ftunivcotedazur:oai:HAL:hal-01966042v1
institution Open Polar
language English
op_collection_id ftunivcotedazur
op_container_end_page 4
op_coverage Reykjavik, Iceland
op_doi https://doi.org/10.1109/WHISPERS.2010.5594908
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1109/WHISPERS.2010.5594908
doi:10.1109/WHISPERS.2010.5594908
op_rights info:eu-repo/semantics/OpenAccess
op_source Proc. IEEE Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS)
https://hal.science/hal-01966042
Proc. IEEE Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2010, Reykjavik, Iceland. pp.1-4, ⟨10.1109/WHISPERS.2010.5594908⟩
publishDate 2010
publisher HAL CCSD
record_format openpolar
spelling ftunivcotedazur:oai:HAL:hal-01966042v1 2025-01-16T22:37:57+00:00 The angular kernel in machine learning for hyperspectral data classification Honeine, Paul Richard, Cédric Laboratoire Modélisation et Sûreté des Systèmes (LM2S) Institut Charles Delaunay (ICD) Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS)-Université de Technologie de Troyes (UTT)-Centre National de la Recherche Scientifique (CNRS) Laboratoire Hippolyte Fizeau (FIZEAU) Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de la Côte d'Azur Université Côte d'Azur (UniCA)-Université Côte d'Azur (UniCA)-Centre National de la Recherche Scientifique (CNRS) Reykjavik, Iceland 2010 https://hal.science/hal-01966042 https://hal.science/hal-01966042v1/document https://hal.science/hal-01966042v1/file/10.angular.pdf https://doi.org/10.1109/WHISPERS.2010.5594908 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.1109/WHISPERS.2010.5594908 doi:10.1109/WHISPERS.2010.5594908 info:eu-repo/semantics/OpenAccess Proc. IEEE Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS) https://hal.science/hal-01966042 Proc. IEEE Workshop on Hyperspectral Image and Signal Processing : Evolution in Remote Sensing (WHISPERS), 2010, Reykjavik, Iceland. pp.1-4, ⟨10.1109/WHISPERS.2010.5594908⟩ data handling Gaussian processes geophysical image processing image classification learning (artificial intelligence) angular kernel hyperspectral data classification illumination energy Gaussian kernel urban classification task hyperspectral images Kernel Support vector machines Hyperspectral imaging Machine learning Spatial resolution Hyperspectral data spectral angle SVM reproducing kernel [INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG] [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing [INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV] info:eu-repo/semantics/conferenceObject Conference papers 2010 ftunivcotedazur https://doi.org/10.1109/WHISPERS.2010.5594908 2024-12-04T01:13:14Z International audience Support vector machines have been investigated with success for hyperspectral data classification. In this paper, we propose a new kernel to measure spectral similarity, called the angular kernel. We provide some of its properties, such as its invariance to illumination energy, as well as connection to previous work. Furthermore, we show that the performance of a classifier associated to the angular kernel is comparable to the Gaussian kernel, in the sense of universality. We derive a class of kernels based on the angular kernel, and study the performance on an urban classification task. Conference Object Iceland HAL Université Côte d'Azur 2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing 1 4
spellingShingle data handling
Gaussian processes
geophysical image processing
image classification
learning (artificial intelligence)
angular kernel
hyperspectral data classification
illumination energy
Gaussian kernel
urban classification task
hyperspectral images
Kernel
Support vector machines
Hyperspectral imaging
Machine learning
Spatial resolution
Hyperspectral data
spectral angle
SVM
reproducing kernel
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
Honeine, Paul
Richard, Cédric
The angular kernel in machine learning for hyperspectral data classification
title The angular kernel in machine learning for hyperspectral data classification
title_full The angular kernel in machine learning for hyperspectral data classification
title_fullStr The angular kernel in machine learning for hyperspectral data classification
title_full_unstemmed The angular kernel in machine learning for hyperspectral data classification
title_short The angular kernel in machine learning for hyperspectral data classification
title_sort angular kernel in machine learning for hyperspectral data classification
topic data handling
Gaussian processes
geophysical image processing
image classification
learning (artificial intelligence)
angular kernel
hyperspectral data classification
illumination energy
Gaussian kernel
urban classification task
hyperspectral images
Kernel
Support vector machines
Hyperspectral imaging
Machine learning
Spatial resolution
Hyperspectral data
spectral angle
SVM
reproducing kernel
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
topic_facet data handling
Gaussian processes
geophysical image processing
image classification
learning (artificial intelligence)
angular kernel
hyperspectral data classification
illumination energy
Gaussian kernel
urban classification task
hyperspectral images
Kernel
Support vector machines
Hyperspectral imaging
Machine learning
Spatial resolution
Hyperspectral data
spectral angle
SVM
reproducing kernel
[INFO.INFO-LG]Computer Science [cs]/Machine Learning [cs.LG]
[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing
[SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]
url https://hal.science/hal-01966042
https://hal.science/hal-01966042v1/document
https://hal.science/hal-01966042v1/file/10.angular.pdf
https://doi.org/10.1109/WHISPERS.2010.5594908