Complementarity of wind and solar power in North Africa: potential for alleviating energy droughts and impacts of the North Atlantic Oscillation

With growing gas and oil prices, electricity generation based on these fossil fuels is becoming increasingly expensive. Furthermore, the vision of natural gas as a transition fuel is subject to many constraints and uncertainties of economic, environmental, and geopolitical nature. Consequently, rene...

Full description

Bibliographic Details
Published in:Paleoceanography and Paleoclimatology
Main Authors: Jurasz, Jakub, Guezgouz, Mohammed, Campana, Pietro E., Kaźmierczak, Bartosz, Kuriqi, Alban, Bloomfield, Hannah, Hingray, Benoit, Canales, Fausto, Hunt, Julian D., Sterl, Sebastian, Elkadeem, Mohamed R.
Format: Article in Journal/Newspaper
Language:Spanish
Published: Elsevier Ltd 2024
Subjects:
Online Access:https://hdl.handle.net/11323/13079
https://doi.org/10.1016/j.rser.2023.114181
https://repositorio.cuc.edu.co/
id ftunivcosta:oai:repositorio.cuc.edu.co:11323/13079
record_format openpolar
institution Open Polar
collection REDICUC - Repositorio Universidad de La Costa
op_collection_id ftunivcosta
language Spanish
topic Climate resilience
Energy transition
Hurrel NAO index
Hybrid energy system
Renewable energy
spellingShingle Climate resilience
Energy transition
Hurrel NAO index
Hybrid energy system
Renewable energy
Jurasz, Jakub
Guezgouz, Mohammed
Campana, Pietro E.
Kaźmierczak, Bartosz
Kuriqi, Alban
Bloomfield, Hannah
Hingray, Benoit
Canales, Fausto
Hunt, Julian D.
Sterl, Sebastian
Elkadeem, Mohamed R.
Complementarity of wind and solar power in North Africa: potential for alleviating energy droughts and impacts of the North Atlantic Oscillation
topic_facet Climate resilience
Energy transition
Hurrel NAO index
Hybrid energy system
Renewable energy
description With growing gas and oil prices, electricity generation based on these fossil fuels is becoming increasingly expensive. Furthermore, the vision of natural gas as a transition fuel is subject to many constraints and uncertainties of economic, environmental, and geopolitical nature. Consequently, renewable energies such as solar and wind power are expected to reach new records of installed capacity over the upcoming years. Considering the above, North Africa is one of the regions with the largest renewable resource potential globally. While extensively studied in the literature, these resources remain underutilized. Thus, to contribute to their future successful deployment and integration with the power system, this study presents a spatial and temporal analysis of the nature of solar and wind resources over North Africa from the perspective of energy droughts. Both the frequency and maximal duration of energy droughts are addressed. Both aspects of renewables’ variable nature have been evaluated in the North Atlantic Oscillation (NAO) context. The analysis considers the period between 1960 and 2020 based on hourly reanalysis data (i.e., near-surface shortwave irradiation, wind speed, and air temperature) and the Hurrel NAO index. The findings show an in-phase relationship between solar power and winter NAO index, particularly over the coastal regions in western North Africa and opposite patterns in its eastern part. For wind energy, the connection with NAO has a more zonal pattern, with negative correlations in the north and positive correlations in the south. Solar energy droughts dominate northern Tunisia, Algeria, and Morocco, while wind energy droughts mainly occur in the Atlas Mountains range. On average, solar energy droughts tend not to exceed 2–3 consecutive days, with the longest extending for five days. Wind energy droughts can be as prolonged as 80 days (Atlas Mountains). Hybridizing solar and wind energy reduces the potential for energy droughts significantly. At the same time, the correlation between ...
format Article in Journal/Newspaper
author Jurasz, Jakub
Guezgouz, Mohammed
Campana, Pietro E.
Kaźmierczak, Bartosz
Kuriqi, Alban
Bloomfield, Hannah
Hingray, Benoit
Canales, Fausto
Hunt, Julian D.
Sterl, Sebastian
Elkadeem, Mohamed R.
author_facet Jurasz, Jakub
Guezgouz, Mohammed
Campana, Pietro E.
Kaźmierczak, Bartosz
Kuriqi, Alban
Bloomfield, Hannah
Hingray, Benoit
Canales, Fausto
Hunt, Julian D.
Sterl, Sebastian
Elkadeem, Mohamed R.
author_sort Jurasz, Jakub
title Complementarity of wind and solar power in North Africa: potential for alleviating energy droughts and impacts of the North Atlantic Oscillation
title_short Complementarity of wind and solar power in North Africa: potential for alleviating energy droughts and impacts of the North Atlantic Oscillation
title_full Complementarity of wind and solar power in North Africa: potential for alleviating energy droughts and impacts of the North Atlantic Oscillation
title_fullStr Complementarity of wind and solar power in North Africa: potential for alleviating energy droughts and impacts of the North Atlantic Oscillation
title_full_unstemmed Complementarity of wind and solar power in North Africa: potential for alleviating energy droughts and impacts of the North Atlantic Oscillation
title_sort complementarity of wind and solar power in north africa: potential for alleviating energy droughts and impacts of the north atlantic oscillation
publisher Elsevier Ltd
publishDate 2024
url https://hdl.handle.net/11323/13079
https://doi.org/10.1016/j.rser.2023.114181
https://repositorio.cuc.edu.co/
genre North Atlantic
North Atlantic oscillation
genre_facet North Atlantic
North Atlantic oscillation
op_source https://www.sciencedirect.com/science/article/pii/S1364032123010390?via%3Dihub
op_relation Renewable and Sustainable Energy Reviews
[1] S. Timmerberg, M. Kaltschmitt Hydrogen from renewables: supply from North Africa to central Europe as blend in existing pipelines – potentials and costs Appl Energy, 237 (Mar. 2019), pp. 795-809, 10.1016/j.apenergy.2019.01.030 View PDFView articleView in ScopusGoogle Scholar
[2] F. Weschenfelder, et al. A review on the complementarity between grid-connected solar and wind power systems J Clean Prod, 257 (Jun) (2020), 10.1016/j.jclepro.2020.120617 Art no. 120617 View at publisher
[3] M. Guezgouz, J. Jurasz, M. Chouai, H. Bloomfield, B. Bekkouche Assessment of solar and wind energy complementarity in Algeria Energy Convers Manag, 238 (Jun) (2021), 10.1016/j.enconman.2021.114170 Art no. 114170
[4] S. Jablonski, M. Tarhini, M. Touati, D. Gonzalez Garcia, J. Alario The mediterranean solar plan: project proposals for renewable energy in the mediterranean partner countries region Energy Pol, 44 (May 2012), pp. 291-300, 10.1016/j.enpol.2012.01.052
[5] H.C. Bloomfield, D.J. Brayshaw, L.C. Shaffrey, P.J. Coker, H.E. Thornton Quantifying the increasing sensitivity of power systems to climate variability Environ Res Lett, 11 (12) (Dec. 2016), Article 124025, 10.1088/1748-9326/11/12/124025
[6] S. Collins, P. Deane, B. Ó Gallachóir, S. Pfenninger, I. Staffell Impacts of inter-annual wind and solar variations on the European power system Joule, 2 (10) (Oct. 2018), pp. 2076-2090, 10.1016/j.joule.2018.06.020
[7] B. Brand, K. Blok Renewable energy perspectives for the North African electricity systems: a comparative analysis of model-based scenario studies Energy Strategy Rev, 6 (Jan. 2015), pp. 1-11, 10.1016/j.esr.2014.11.002
[8] D. Hawila, M.A.H. Mondal, S. Kennedy, T. Mezher Renewable energy readiness assessment for North African countries Renew Sustain Energy Rev, 33 (May 2014), pp. 128-140, 10.1016/j.rser.2014.01.066
[9] N. Komendantova, A. Patt, L. Barras, A. Battaglini Perception of risks in renewable energy projects: the case of concentrated solar power in North Africa Energy Pol, 40 (Jan. 2012), pp. 103-109, 10.1016/j.enpol.2009.12.008
[10] D. Raynaud, B. Hingray, B. François, J.D. Creutin Energy droughts from variable renewable energy sources in European climates Renew Energy, 125 (Sep. 2018), pp. 578-589, 10.1016/j.renene.2018.02.130
[11] N. Plain, B. Hingray, S. Mathy Accounting for low solar resource days to size 100% solar microgrids power systems in Africa Renew Energy, 131 (Feb. 2019), pp. 448-458, 10.1016/j.renene.2018.07.036
[12] H. Seyedhashemi, B. Hingray, C. Lavaysse, T. Chamarande The impact of low-resource periods on the reliability of wind power systems for rural electrification in Africa Energies, 14 (11) (May 2021), 10.3390/en14112978 Art no. 2978
[13] J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions Sol Energy, 195 (Jan. 2020), pp. 703-724, 10.1016/j.solener.2019.11.087
[14] F.A. Canales, J. Jurasz, A. Beluco, A. Kies Assessing temporal complementarity between three variable energy sources through correlation and compromise programming Energy, 192 (Feb. 2020), 10.1016/j.energy.2019.116637 Art no. 116637
[15] H.C. Bloomfield, C.M. Wainwright, N. Mitchell Characterizing the variability and meteorological drivers of wind power and solar power generation over Africa Meteorol Appl, 29 (5) (Oct. 2022), 10.1002/met.2093 Art no. e2093
[16] M. Zeyringer, J. Price, B. Fais, P.-H. Li, E. Sharp Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather Nat Energy, 3 (5) (May 2018), pp. 395-403, 10.1038/s41560-018-0128-x
[17] K. Backhaus, P. Gausling, L. Hildebrand Comparing the incomparable: lessons to be learned from models evaluating the feasibility of Desertec Energy, 82 (Mar. 2015), pp. 905-913, 10.1016/j.energy.2015.01.100
[18] A. Jahnke-Bornemann, B. Brümmer The Iceland—lofotes pressure difference: different states of the North Atlantic low-pressure zone Tellus Dyn Meteorol Oceanogr, 61 (4) (Jan. 2008), pp. 466-475, 10.1111/j.1600-0870.2009.00401.x View at publisher Google Scholar
[19] J. Hurrell, A. Phillips, and NCAR. "The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based)." NCAR. [Online.] Available: https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based (accessed Oct. 10, 2022) . .
[20] B. François Influence of winter north-atlantic oscillation on climate-related-energy penetration in Europe Renew Energy, 99 (Dec. 2016), pp. 602-613, 10.1016/j.renene.2016.07.010
[21] D. Pozo-Vazquez, F.J. Santos-Alamillos, V. Lara-Fanego, J.A. Ruiz-Arias, J. Tovar-Pescador The impact of the NAO on the solar and wind energy resources in the mediterranean area S.M. Vicente-Serrano, R.M. Trigo (Eds.), Hydrological, socioeconomic and ecological impacts of the North atlantic oscillation in the mediterranean region, Springer Netherlands, Dordrecht, Netherlands (2011), pp. 213-231
[22] R. Selvaraju Implications of climate change for agriculture and food security in the western asia and northern Africa region M.V.K. Sivakumar, R. Lal, R. Selvaraju, I. Hamdan (Eds.), Climate change and food security in west asia and North Africa, Springer Netherlands, Dordrecht, Netherlands (2013), pp. 27-51
[23] J. Scheffran, A. Battaglini Climate and conflicts: the security risks of global warming Reg Environ Change, 11 (1) (Mar. 2011), pp. 27-39, 10.1007/s10113-010-0175-8
[24] The United Nations Statistics Division. "UNSD - Methodology." The United Nations Statistics Division. [Online.] Available: https://unstats.un.org/unsd/methodology/m49/#geo-regions (accessed Apr. 3, 2023).
[25] The African Union Commission. "Member States." African Union. [Online.] Available: https://au.int/en/member_states/countryprofiles2 (accessed Apr. 3, 2023).
[26] B.H. Warmington, J.M. Abun-Nasr, M. Brett North Africa Encyclopedia Britannica. [Online.] Available: https://www.britannica.com/place/North-Africa accessed Apr. 3, 2023
[27] H. Shen, et al. The state-of-the-arts of the study on grid interconnection between Iberian Peninsula and West Maghreb region Global Energy Interconnection, 1 (1) (2018/01/01/2018), pp. 20-28, 10.14171/j.2096-5117.gei.2018.01.003 View PDFView articleView in ScopusGoogle Scholar
[28] H. Ritchie, M. Roser, and P. Rosado. "Energy." Our World in Data. [Online.] Available: https://ourworldindata.org (accessed May 5, 2022). Google Scholar
[29] International Energy Agency Data and statistics International Energy Agency. [Online.] Available: https://www.iea.org/data-and-statistics accessed May 16, 2022 Google Scholar
[30] The World Bank. "World Bank Open Data." World Bank. [Online.] Available: https://data.worldbank.org (accessed Sep. 9, 2022). Google Scholar
[31] N. Supersberger, L. Führer Integration of renewable energies and nuclear power into North African Energy Systems: an analysis of energy import and export effects Energy Pol, 39 (8) (Aug. 2011), pp. 4458-4465, 10.1016/j.enpol.2010.12.046 View PDFView articleView in ScopusGoogle Scholar
[32] B. Belabes, A. Youcefi, O. Guerri, M. Djamai, A. Kaabeche Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria Renew Sustain Energy Rev, 51 (Nov. 2015), pp. 1245-1255, 10.1016/j.rser.2015.07.043
[33] A. Rovzar. "North Africa's pathways to clean energy transitions." International Energy Agency. [Online.] Available: https://www.iea.org/commentaries/north-africa-s-pathways-to-clean-energy-transitions (accessed Nov. 16, 2022).
[34] H. Hersbach et al. "ERA5 hourly data on single levels from 1940 to present." Copernicus Climate Change Service (C3S) Climate Data Store (CDS). [Online.] Available: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels (accessed Sep. 9, 2022).
[35] D.I.V. Domeisen, C.I. Garfinkel, A.H. Butler The teleconnection of El Niño southern oscillation to the stratosphere Rev Geophys, 57 (1) (Aug. 2019), pp. 5-47, 10.1029/2018RG000596
[36] A.G. Barnston, R.E. Livezey Classification, seasonality and persistence of low-frequency atmospheric circulation patterns Mon Weather Rev, 115 (6) (Jun. 1987), pp. 1083-1126
[37] J.A. Duffie, W.A. Beckman Solar engineering of thermal processes John Wiley & Sons, Hoboken, NJ, USA (2013)
[38] J.A. Duffie, W.A. Beckman, N. Blair Solar engineering of thermal processes, photovoltaics and wind John Wiley & Sons, Hoboken, NJ, USA (2020)
[39] T. Ma, H. Yang, L. Lu Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays Sol Energy, 100 (Feb. 2014), pp. 31-41, 10.1016/j.solener.2013.12.003
[40] F.A. Canales, J.K. Jurasz, M. Guezgouz, A. Beluco Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community Sustain Energy Technol Assessments, 44 (Apr. 2021), 10.1016/j.seta.2021.101062 Art no. 101062
[41] S.-P. Breton, G. Moe Status, plans and technologies for offshore wind turbines in Europe and North America Renew Energy, 34 (3) (Mar. 2009), pp. 646-654, 10.1016/j.renene.2008.05.040 View PDFView articleView in ScopusGoogle Scholar
[42] A. Pek. "Wind turbine sizes keep growing as industry consolidation continues." Global Wind Energy Council (GWEC). [Online.] Available: https://gwec.net/wind-turbine-sizes-keep-growing-as-industry-consolidation-continues/(accessed Nov. 10, 2022) .
[28] H. Ritchie, M. Roser, and P. Rosado. "Energy." Our World in Data. [Online.] Available: https://ourworldindata.org (accessed May 5, 2022).
[29] International Energy Agency Data and statistics International Energy Agency. [Online.] Available: https://www.iea.org/data-and-statistics accessed May 16, 2022
[30] The World Bank. "World Bank Open Data." World Bank. [Online.] Available: https://data.worldbank.org (accessed Sep. 9, 2022).
[33] A. Rovzar. "North Africa's pathways to clean energy transitions." International Energy Agency. [Online.] Available: https://www.iea.org/commentaries/north-africa-s-pathways-to-clean-energy-transitions (accessed Nov. 16, 2022). Google Scholar
[43] K. Gruber, P. Regner, S. Wehrle, M. Zeyringer, J. Schmidt Towards global validation of wind power simulations: a multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas Energy, 238 (Jan. 2022), 10.1016/j.energy.2021.121520 Art no. 121520
[44] A. Ulazia, J. Sáenz, G. Ibarra-Berastegi, S.J. González-Rojí, S. Carreno-Madinabeitia Global estimations of wind energy potential considering seasonal air density changes Energy, 187 (Nov. 2019), 10.1016/j.energy.2019.115938 Art no. 115938
[45] V.T. Chow, D.R. Maidment, L.W. Mays Applied hydrology McGraw-Hill, New York, NY, USA (1988)
op_rights Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)
https://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/embargoedAccess
http://purl.org/coar/access_right/c_f1cf
op_doi https://doi.org/10.1016/j.rser.2023.11418110.1016/j.apenergy.2019.01.03010.1016/j.jclepro.2020.12061710.1016/j.enconman.2021.11417010.3390/en1411297810.1016/j.energy.2019.11663710.1002/met.209310.1111/j.1600-0870.2009.00401.x10.14171/j.2096-5117.gei.2018.
container_title Paleoceanography and Paleoclimatology
container_volume 39
container_issue 8
_version_ 1810463187316768768
spelling ftunivcosta:oai:repositorio.cuc.edu.co:11323/13079 2024-09-15T18:23:04+00:00 Complementarity of wind and solar power in North Africa: potential for alleviating energy droughts and impacts of the North Atlantic Oscillation Jurasz, Jakub Guezgouz, Mohammed Campana, Pietro E. Kaźmierczak, Bartosz Kuriqi, Alban Bloomfield, Hannah Hingray, Benoit Canales, Fausto Hunt, Julian D. Sterl, Sebastian Elkadeem, Mohamed R. 2024-06-26T13:10:27Z 12 páginas application/pdf https://hdl.handle.net/11323/13079 https://doi.org/10.1016/j.rser.2023.114181 https://repositorio.cuc.edu.co/ spa spa Elsevier Ltd United Kingdom Renewable and Sustainable Energy Reviews [1] S. Timmerberg, M. Kaltschmitt Hydrogen from renewables: supply from North Africa to central Europe as blend in existing pipelines – potentials and costs Appl Energy, 237 (Mar. 2019), pp. 795-809, 10.1016/j.apenergy.2019.01.030 View PDFView articleView in ScopusGoogle Scholar [2] F. Weschenfelder, et al. A review on the complementarity between grid-connected solar and wind power systems J Clean Prod, 257 (Jun) (2020), 10.1016/j.jclepro.2020.120617 Art no. 120617 View at publisher [3] M. Guezgouz, J. Jurasz, M. Chouai, H. Bloomfield, B. Bekkouche Assessment of solar and wind energy complementarity in Algeria Energy Convers Manag, 238 (Jun) (2021), 10.1016/j.enconman.2021.114170 Art no. 114170 [4] S. Jablonski, M. Tarhini, M. Touati, D. Gonzalez Garcia, J. Alario The mediterranean solar plan: project proposals for renewable energy in the mediterranean partner countries region Energy Pol, 44 (May 2012), pp. 291-300, 10.1016/j.enpol.2012.01.052 [5] H.C. Bloomfield, D.J. Brayshaw, L.C. Shaffrey, P.J. Coker, H.E. Thornton Quantifying the increasing sensitivity of power systems to climate variability Environ Res Lett, 11 (12) (Dec. 2016), Article 124025, 10.1088/1748-9326/11/12/124025 [6] S. Collins, P. Deane, B. Ó Gallachóir, S. Pfenninger, I. Staffell Impacts of inter-annual wind and solar variations on the European power system Joule, 2 (10) (Oct. 2018), pp. 2076-2090, 10.1016/j.joule.2018.06.020 [7] B. Brand, K. Blok Renewable energy perspectives for the North African electricity systems: a comparative analysis of model-based scenario studies Energy Strategy Rev, 6 (Jan. 2015), pp. 1-11, 10.1016/j.esr.2014.11.002 [8] D. Hawila, M.A.H. Mondal, S. Kennedy, T. Mezher Renewable energy readiness assessment for North African countries Renew Sustain Energy Rev, 33 (May 2014), pp. 128-140, 10.1016/j.rser.2014.01.066 [9] N. Komendantova, A. Patt, L. Barras, A. Battaglini Perception of risks in renewable energy projects: the case of concentrated solar power in North Africa Energy Pol, 40 (Jan. 2012), pp. 103-109, 10.1016/j.enpol.2009.12.008 [10] D. Raynaud, B. Hingray, B. François, J.D. Creutin Energy droughts from variable renewable energy sources in European climates Renew Energy, 125 (Sep. 2018), pp. 578-589, 10.1016/j.renene.2018.02.130 [11] N. Plain, B. Hingray, S. Mathy Accounting for low solar resource days to size 100% solar microgrids power systems in Africa Renew Energy, 131 (Feb. 2019), pp. 448-458, 10.1016/j.renene.2018.07.036 [12] H. Seyedhashemi, B. Hingray, C. Lavaysse, T. Chamarande The impact of low-resource periods on the reliability of wind power systems for rural electrification in Africa Energies, 14 (11) (May 2021), 10.3390/en14112978 Art no. 2978 [13] J. Jurasz, F.A. Canales, A. Kies, M. Guezgouz, A. Beluco A review on the complementarity of renewable energy sources: concept, metrics, application and future research directions Sol Energy, 195 (Jan. 2020), pp. 703-724, 10.1016/j.solener.2019.11.087 [14] F.A. Canales, J. Jurasz, A. Beluco, A. Kies Assessing temporal complementarity between three variable energy sources through correlation and compromise programming Energy, 192 (Feb. 2020), 10.1016/j.energy.2019.116637 Art no. 116637 [15] H.C. Bloomfield, C.M. Wainwright, N. Mitchell Characterizing the variability and meteorological drivers of wind power and solar power generation over Africa Meteorol Appl, 29 (5) (Oct. 2022), 10.1002/met.2093 Art no. e2093 [16] M. Zeyringer, J. Price, B. Fais, P.-H. Li, E. Sharp Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather Nat Energy, 3 (5) (May 2018), pp. 395-403, 10.1038/s41560-018-0128-x [17] K. Backhaus, P. Gausling, L. Hildebrand Comparing the incomparable: lessons to be learned from models evaluating the feasibility of Desertec Energy, 82 (Mar. 2015), pp. 905-913, 10.1016/j.energy.2015.01.100 [18] A. Jahnke-Bornemann, B. Brümmer The Iceland—lofotes pressure difference: different states of the North Atlantic low-pressure zone Tellus Dyn Meteorol Oceanogr, 61 (4) (Jan. 2008), pp. 466-475, 10.1111/j.1600-0870.2009.00401.x View at publisher Google Scholar [19] J. Hurrell, A. Phillips, and NCAR. "The Climate Data Guide: Hurrell North Atlantic Oscillation (NAO) Index (station-based)." NCAR. [Online.] Available: https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based (accessed Oct. 10, 2022) . . [20] B. François Influence of winter north-atlantic oscillation on climate-related-energy penetration in Europe Renew Energy, 99 (Dec. 2016), pp. 602-613, 10.1016/j.renene.2016.07.010 [21] D. Pozo-Vazquez, F.J. Santos-Alamillos, V. Lara-Fanego, J.A. Ruiz-Arias, J. Tovar-Pescador The impact of the NAO on the solar and wind energy resources in the mediterranean area S.M. Vicente-Serrano, R.M. Trigo (Eds.), Hydrological, socioeconomic and ecological impacts of the North atlantic oscillation in the mediterranean region, Springer Netherlands, Dordrecht, Netherlands (2011), pp. 213-231 [22] R. Selvaraju Implications of climate change for agriculture and food security in the western asia and northern Africa region M.V.K. Sivakumar, R. Lal, R. Selvaraju, I. Hamdan (Eds.), Climate change and food security in west asia and North Africa, Springer Netherlands, Dordrecht, Netherlands (2013), pp. 27-51 [23] J. Scheffran, A. Battaglini Climate and conflicts: the security risks of global warming Reg Environ Change, 11 (1) (Mar. 2011), pp. 27-39, 10.1007/s10113-010-0175-8 [24] The United Nations Statistics Division. "UNSD - Methodology." The United Nations Statistics Division. [Online.] Available: https://unstats.un.org/unsd/methodology/m49/#geo-regions (accessed Apr. 3, 2023). [25] The African Union Commission. "Member States." African Union. [Online.] Available: https://au.int/en/member_states/countryprofiles2 (accessed Apr. 3, 2023). [26] B.H. Warmington, J.M. Abun-Nasr, M. Brett North Africa Encyclopedia Britannica. [Online.] Available: https://www.britannica.com/place/North-Africa accessed Apr. 3, 2023 [27] H. Shen, et al. The state-of-the-arts of the study on grid interconnection between Iberian Peninsula and West Maghreb region Global Energy Interconnection, 1 (1) (2018/01/01/2018), pp. 20-28, 10.14171/j.2096-5117.gei.2018.01.003 View PDFView articleView in ScopusGoogle Scholar [28] H. Ritchie, M. Roser, and P. Rosado. "Energy." Our World in Data. [Online.] Available: https://ourworldindata.org (accessed May 5, 2022). Google Scholar [29] International Energy Agency Data and statistics International Energy Agency. [Online.] Available: https://www.iea.org/data-and-statistics accessed May 16, 2022 Google Scholar [30] The World Bank. "World Bank Open Data." World Bank. [Online.] Available: https://data.worldbank.org (accessed Sep. 9, 2022). Google Scholar [31] N. Supersberger, L. Führer Integration of renewable energies and nuclear power into North African Energy Systems: an analysis of energy import and export effects Energy Pol, 39 (8) (Aug. 2011), pp. 4458-4465, 10.1016/j.enpol.2010.12.046 View PDFView articleView in ScopusGoogle Scholar [32] B. Belabes, A. Youcefi, O. Guerri, M. Djamai, A. Kaabeche Evaluation of wind energy potential and estimation of cost using wind energy turbines for electricity generation in north of Algeria Renew Sustain Energy Rev, 51 (Nov. 2015), pp. 1245-1255, 10.1016/j.rser.2015.07.043 [33] A. Rovzar. "North Africa's pathways to clean energy transitions." International Energy Agency. [Online.] Available: https://www.iea.org/commentaries/north-africa-s-pathways-to-clean-energy-transitions (accessed Nov. 16, 2022). [34] H. Hersbach et al. "ERA5 hourly data on single levels from 1940 to present." Copernicus Climate Change Service (C3S) Climate Data Store (CDS). [Online.] Available: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels (accessed Sep. 9, 2022). [35] D.I.V. Domeisen, C.I. Garfinkel, A.H. Butler The teleconnection of El Niño southern oscillation to the stratosphere Rev Geophys, 57 (1) (Aug. 2019), pp. 5-47, 10.1029/2018RG000596 [36] A.G. Barnston, R.E. Livezey Classification, seasonality and persistence of low-frequency atmospheric circulation patterns Mon Weather Rev, 115 (6) (Jun. 1987), pp. 1083-1126 [37] J.A. Duffie, W.A. Beckman Solar engineering of thermal processes John Wiley & Sons, Hoboken, NJ, USA (2013) [38] J.A. Duffie, W.A. Beckman, N. Blair Solar engineering of thermal processes, photovoltaics and wind John Wiley & Sons, Hoboken, NJ, USA (2020) [39] T. Ma, H. Yang, L. Lu Development of a model to simulate the performance characteristics of crystalline silicon photovoltaic modules/strings/arrays Sol Energy, 100 (Feb. 2014), pp. 31-41, 10.1016/j.solener.2013.12.003 [40] F.A. Canales, J.K. Jurasz, M. Guezgouz, A. Beluco Cost-reliability analysis of hybrid pumped-battery storage for solar and wind energy integration in an island community Sustain Energy Technol Assessments, 44 (Apr. 2021), 10.1016/j.seta.2021.101062 Art no. 101062 [41] S.-P. Breton, G. Moe Status, plans and technologies for offshore wind turbines in Europe and North America Renew Energy, 34 (3) (Mar. 2009), pp. 646-654, 10.1016/j.renene.2008.05.040 View PDFView articleView in ScopusGoogle Scholar [42] A. Pek. "Wind turbine sizes keep growing as industry consolidation continues." Global Wind Energy Council (GWEC). [Online.] Available: https://gwec.net/wind-turbine-sizes-keep-growing-as-industry-consolidation-continues/(accessed Nov. 10, 2022) . [28] H. Ritchie, M. Roser, and P. Rosado. "Energy." Our World in Data. [Online.] Available: https://ourworldindata.org (accessed May 5, 2022). [29] International Energy Agency Data and statistics International Energy Agency. [Online.] Available: https://www.iea.org/data-and-statistics accessed May 16, 2022 [30] The World Bank. "World Bank Open Data." World Bank. [Online.] Available: https://data.worldbank.org (accessed Sep. 9, 2022). [33] A. Rovzar. "North Africa's pathways to clean energy transitions." International Energy Agency. [Online.] Available: https://www.iea.org/commentaries/north-africa-s-pathways-to-clean-energy-transitions (accessed Nov. 16, 2022). Google Scholar [43] K. Gruber, P. Regner, S. Wehrle, M. Zeyringer, J. Schmidt Towards global validation of wind power simulations: a multi-country assessment of wind power simulation from MERRA-2 and ERA-5 reanalyses bias-corrected with the global wind atlas Energy, 238 (Jan. 2022), 10.1016/j.energy.2021.121520 Art no. 121520 [44] A. Ulazia, J. Sáenz, G. Ibarra-Berastegi, S.J. González-Rojí, S. Carreno-Madinabeitia Global estimations of wind energy potential considering seasonal air density changes Energy, 187 (Nov. 2019), 10.1016/j.energy.2019.115938 Art no. 115938 [45] V.T. Chow, D.R. Maidment, L.W. Mays Applied hydrology McGraw-Hill, New York, NY, USA (1988) Atribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0) https://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/embargoedAccess http://purl.org/coar/access_right/c_f1cf https://www.sciencedirect.com/science/article/pii/S1364032123010390?via%3Dihub Climate resilience Energy transition Hurrel NAO index Hybrid energy system Renewable energy Artículo de revista http://purl.org/coar/resource_type/c_2df8fbb1 Text info:eu-repo/semantics/article http://purl.org/redcol/resource_type/ART info:eu-repo/semantics/updatedVersion http://purl.org/coar/version/c_dc82b40f9837b551 2024 ftunivcosta https://doi.org/10.1016/j.rser.2023.11418110.1016/j.apenergy.2019.01.03010.1016/j.jclepro.2020.12061710.1016/j.enconman.2021.11417010.3390/en1411297810.1016/j.energy.2019.11663710.1002/met.209310.1111/j.1600-0870.2009.00401.x10.14171/j.2096-5117.gei.2018. 2024-07-01T23:31:12Z With growing gas and oil prices, electricity generation based on these fossil fuels is becoming increasingly expensive. Furthermore, the vision of natural gas as a transition fuel is subject to many constraints and uncertainties of economic, environmental, and geopolitical nature. Consequently, renewable energies such as solar and wind power are expected to reach new records of installed capacity over the upcoming years. Considering the above, North Africa is one of the regions with the largest renewable resource potential globally. While extensively studied in the literature, these resources remain underutilized. Thus, to contribute to their future successful deployment and integration with the power system, this study presents a spatial and temporal analysis of the nature of solar and wind resources over North Africa from the perspective of energy droughts. Both the frequency and maximal duration of energy droughts are addressed. Both aspects of renewables’ variable nature have been evaluated in the North Atlantic Oscillation (NAO) context. The analysis considers the period between 1960 and 2020 based on hourly reanalysis data (i.e., near-surface shortwave irradiation, wind speed, and air temperature) and the Hurrel NAO index. The findings show an in-phase relationship between solar power and winter NAO index, particularly over the coastal regions in western North Africa and opposite patterns in its eastern part. For wind energy, the connection with NAO has a more zonal pattern, with negative correlations in the north and positive correlations in the south. Solar energy droughts dominate northern Tunisia, Algeria, and Morocco, while wind energy droughts mainly occur in the Atlas Mountains range. On average, solar energy droughts tend not to exceed 2–3 consecutive days, with the longest extending for five days. Wind energy droughts can be as prolonged as 80 days (Atlas Mountains). Hybridizing solar and wind energy reduces the potential for energy droughts significantly. At the same time, the correlation between ... Article in Journal/Newspaper North Atlantic North Atlantic oscillation REDICUC - Repositorio Universidad de La Costa Paleoceanography and Paleoclimatology 39 8