The Driver of the Carbon Isotope Minima During the Last Deglaciation: A Weakened Biological Pump or Enhanced Southern Ocean Circulation?

The cause of the initial rise in atmospheric CO2 during the last deglaciation remains unknown. Coincident with the rising atmospheric CO2, the δ13C of atmospheric CO2 decreased by ~0.3‰ during Heinrich Stadial 1 (HS1: 14.5-17.5 kyr BP), which requires the input of carbon from an isotopically light r...

Full description

Bibliographic Details
Main Author: Cote, Melissa C
Format: Text
Language:unknown
Published: OpenCommons@UConn 2016
Subjects:
Online Access:https://opencommons.uconn.edu/gs_theses/974
https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=2074&context=gs_theses
id ftunivconn:oai:opencommons.uconn.edu:gs_theses-2074
record_format openpolar
spelling ftunivconn:oai:opencommons.uconn.edu:gs_theses-2074 2023-05-15T18:24:26+02:00 The Driver of the Carbon Isotope Minima During the Last Deglaciation: A Weakened Biological Pump or Enhanced Southern Ocean Circulation? Cote, Melissa C 2016-08-22T07:00:00Z application/pdf https://opencommons.uconn.edu/gs_theses/974 https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=2074&context=gs_theses unknown OpenCommons@UConn https://opencommons.uconn.edu/gs_theses/974 https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=2074&context=gs_theses Master's Theses carbon isotopes biological pump Heinrich Stadial 1 text 2016 ftunivconn 2022-07-11T18:50:37Z The cause of the initial rise in atmospheric CO2 during the last deglaciation remains unknown. Coincident with the rising atmospheric CO2, the δ13C of atmospheric CO2 decreased by ~0.3‰ during Heinrich Stadial 1 (HS1: 14.5-17.5 kyr BP), which requires the input of carbon from an isotopically light reservoir. The light carbon signal in the atmosphere occurred concurrently with the carbon isotope minimum, or a decrease in surface ocean δ13C of ~0.5‰, suggesting the two phenomena are related. The leading hypotheses explaining the δ13C minimum are (1) enhanced ventilation of 13C-depleted abyssal water in the Southern Ocean which in turn caused low δ13C values in the surface ocean and atmosphere, and (2) a reduction in the Atlantic Meridional Overturning Circulation (AMOC) weakened the efficiency of the ocean’s biological pump, thereby increasing the concentration of light carbon in the surface ocean. In order to evaluate these two hypotheses, we compiled 70 published, globally-distributed planktonic foraminiferal δ13C records and enhanced the sampling resolution of three low resolution records from the western tropical Pacific (WTP). The HS1 δ13C anomaly, or the relative difference in δ13C between the LGM and HS1, was calculated for each record, and we compared the spatial patterns between ocean basins and within the tropical Pacific and Southern Oceans. We find that the average δ13C anomaly is similar in all ocean basins. We also find similar δ13C signals in the eastern equatorial Pacific (EEP) upwelling regime and the WTP convergence zone. In the Southern Ocean we find a latitudinal trend of δ13C anomalies decreasing in magnitude progressing towards higher latitudes and the region of abyssal upwelling. Because the Southern Ocean hypothesis implies that the δ13C signal should be largest in the Southern Ocean and in upwelling regions, our results are inconsistent with a Southern Ocean driver. Our findings are instead consistent with a recent modeling study that simulated the effects of a weakened biological pump, ... Text Southern Ocean University of Connecticut (UConn): DigitalCommons@UConn Pacific Southern Ocean
institution Open Polar
collection University of Connecticut (UConn): DigitalCommons@UConn
op_collection_id ftunivconn
language unknown
topic carbon isotopes
biological pump
Heinrich Stadial 1
spellingShingle carbon isotopes
biological pump
Heinrich Stadial 1
Cote, Melissa C
The Driver of the Carbon Isotope Minima During the Last Deglaciation: A Weakened Biological Pump or Enhanced Southern Ocean Circulation?
topic_facet carbon isotopes
biological pump
Heinrich Stadial 1
description The cause of the initial rise in atmospheric CO2 during the last deglaciation remains unknown. Coincident with the rising atmospheric CO2, the δ13C of atmospheric CO2 decreased by ~0.3‰ during Heinrich Stadial 1 (HS1: 14.5-17.5 kyr BP), which requires the input of carbon from an isotopically light reservoir. The light carbon signal in the atmosphere occurred concurrently with the carbon isotope minimum, or a decrease in surface ocean δ13C of ~0.5‰, suggesting the two phenomena are related. The leading hypotheses explaining the δ13C minimum are (1) enhanced ventilation of 13C-depleted abyssal water in the Southern Ocean which in turn caused low δ13C values in the surface ocean and atmosphere, and (2) a reduction in the Atlantic Meridional Overturning Circulation (AMOC) weakened the efficiency of the ocean’s biological pump, thereby increasing the concentration of light carbon in the surface ocean. In order to evaluate these two hypotheses, we compiled 70 published, globally-distributed planktonic foraminiferal δ13C records and enhanced the sampling resolution of three low resolution records from the western tropical Pacific (WTP). The HS1 δ13C anomaly, or the relative difference in δ13C between the LGM and HS1, was calculated for each record, and we compared the spatial patterns between ocean basins and within the tropical Pacific and Southern Oceans. We find that the average δ13C anomaly is similar in all ocean basins. We also find similar δ13C signals in the eastern equatorial Pacific (EEP) upwelling regime and the WTP convergence zone. In the Southern Ocean we find a latitudinal trend of δ13C anomalies decreasing in magnitude progressing towards higher latitudes and the region of abyssal upwelling. Because the Southern Ocean hypothesis implies that the δ13C signal should be largest in the Southern Ocean and in upwelling regions, our results are inconsistent with a Southern Ocean driver. Our findings are instead consistent with a recent modeling study that simulated the effects of a weakened biological pump, ...
format Text
author Cote, Melissa C
author_facet Cote, Melissa C
author_sort Cote, Melissa C
title The Driver of the Carbon Isotope Minima During the Last Deglaciation: A Weakened Biological Pump or Enhanced Southern Ocean Circulation?
title_short The Driver of the Carbon Isotope Minima During the Last Deglaciation: A Weakened Biological Pump or Enhanced Southern Ocean Circulation?
title_full The Driver of the Carbon Isotope Minima During the Last Deglaciation: A Weakened Biological Pump or Enhanced Southern Ocean Circulation?
title_fullStr The Driver of the Carbon Isotope Minima During the Last Deglaciation: A Weakened Biological Pump or Enhanced Southern Ocean Circulation?
title_full_unstemmed The Driver of the Carbon Isotope Minima During the Last Deglaciation: A Weakened Biological Pump or Enhanced Southern Ocean Circulation?
title_sort driver of the carbon isotope minima during the last deglaciation: a weakened biological pump or enhanced southern ocean circulation?
publisher OpenCommons@UConn
publishDate 2016
url https://opencommons.uconn.edu/gs_theses/974
https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=2074&context=gs_theses
geographic Pacific
Southern Ocean
geographic_facet Pacific
Southern Ocean
genre Southern Ocean
genre_facet Southern Ocean
op_source Master's Theses
op_relation https://opencommons.uconn.edu/gs_theses/974
https://opencommons.uconn.edu/cgi/viewcontent.cgi?article=2074&context=gs_theses
_version_ 1766204947104268288