Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes

Heinrich events, identified as enhanced ice-rafted detritus (IRD) in North Atlantic deep sea sediments (Heinrich, 1988; Hemming, 2004) have classically been attributed to Laurentide ice-sheet (LIS) instabilities (MacAyeal, 1993; Calov et al., 2002; Hulbe et al., 2004) and assumed to lead to importan...

Full description

Bibliographic Details
Published in:Climate of the Past
Main Authors: Álvarez Solas, Jorge, Montoya, M., Ritz, C., Ramstein, G., Charbit, S., Dumas, C., Nisancioglu, K., Dokken, T., Ganopolski, A.
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Gesellschaft MBH 2011
Subjects:
Online Access:https://eprints.ucm.es/id/eprint/24248/
https://eprints.ucm.es/id/eprint/24248/1/alvarezsolas05libre.pdf
https://doi.org/10.5194/cp-7-1297-2011
id ftunivcmadrid:oai:www.ucm.es:24248
record_format openpolar
spelling ftunivcmadrid:oai:www.ucm.es:24248 2023-05-15T16:35:39+02:00 Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes Álvarez Solas, Jorge Montoya, M. Ritz, C. Ramstein, G. Charbit, S. Dumas, C. Nisancioglu, K. Dokken, T. Ganopolski, A. 2011-11-29 application/pdf https://eprints.ucm.es/id/eprint/24248/ https://eprints.ucm.es/id/eprint/24248/1/alvarezsolas05libre.pdf https://doi.org/10.5194/cp-7-1297-2011 en eng Copernicus Gesellschaft MBH https://eprints.ucm.es/id/eprint/24248/1/alvarezsolas05libre.pdf cc_by info:eu-repo/semantics/openAccess CC-BY Astrofísica Astronomía Física atmosférica info:eu-repo/semantics/article PeerReviewed 2011 ftunivcmadrid https://doi.org/10.5194/cp-7-1297-2011 2022-05-12T19:56:01Z Heinrich events, identified as enhanced ice-rafted detritus (IRD) in North Atlantic deep sea sediments (Heinrich, 1988; Hemming, 2004) have classically been attributed to Laurentide ice-sheet (LIS) instabilities (MacAyeal, 1993; Calov et al., 2002; Hulbe et al., 2004) and assumed to lead to important disruptions of the Atlantic meridional overturning circulation (AMOC) and North Atlantic deep water (NADW) formation. However, recent paleoclimate data have revealed that most of these events probably occurred after the AMOC had already slowed down or/and NADW largely collapsed, within about a thousand years (Hall et al., 2006; Hemming, 2004; Jonkers et al., 2010; Roche et al., 2004), implying that the initial AMOC reduction could not have been caused by the Heinrich events themselves. Here we propose an alternative driving mechanism, specifically for Heinrich event 1 (H1; 18 to 15 ka BP), by which North Atlantic ocean circulation changes are found to have strong impacts on LIS dynamics. By combining simulations with a coupled climate model and a three-dimensional ice sheet model, our study illustrates how reduced NADW and AMOC weakening lead to a subsurface warming in the Nordic and Labrador Seas resulting in rapid melting of the Hudson Strait and Labrador ice shelves. Lack of buttressing by the ice shelves implies a substantial ice-stream acceleration, enhanced ice-discharge and sea level rise, with peak values 500-1500 yr after the initial AMOC reduction. Our scenario modifies the previous paradigm of H1 by solving the paradox of its occurrence during a cold surface period, and highlights the importance of taking into account the effects of oceanic circulation on ice-sheets dynamics in order to elucidate the triggering mechanism of Heinrich events. Article in Journal/Newspaper Hudson Strait Ice Sheet Ice Shelves NADW North Atlantic Deep Water North Atlantic Universidad Complutense de Madrid (UCM): E-Prints Complutense Hudson Hudson Strait ENVELOPE(-70.000,-70.000,62.000,62.000) Climate of the Past 7 4 1297 1306
institution Open Polar
collection Universidad Complutense de Madrid (UCM): E-Prints Complutense
op_collection_id ftunivcmadrid
language English
topic Astrofísica
Astronomía
Física atmosférica
spellingShingle Astrofísica
Astronomía
Física atmosférica
Álvarez Solas, Jorge
Montoya, M.
Ritz, C.
Ramstein, G.
Charbit, S.
Dumas, C.
Nisancioglu, K.
Dokken, T.
Ganopolski, A.
Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes
topic_facet Astrofísica
Astronomía
Física atmosférica
description Heinrich events, identified as enhanced ice-rafted detritus (IRD) in North Atlantic deep sea sediments (Heinrich, 1988; Hemming, 2004) have classically been attributed to Laurentide ice-sheet (LIS) instabilities (MacAyeal, 1993; Calov et al., 2002; Hulbe et al., 2004) and assumed to lead to important disruptions of the Atlantic meridional overturning circulation (AMOC) and North Atlantic deep water (NADW) formation. However, recent paleoclimate data have revealed that most of these events probably occurred after the AMOC had already slowed down or/and NADW largely collapsed, within about a thousand years (Hall et al., 2006; Hemming, 2004; Jonkers et al., 2010; Roche et al., 2004), implying that the initial AMOC reduction could not have been caused by the Heinrich events themselves. Here we propose an alternative driving mechanism, specifically for Heinrich event 1 (H1; 18 to 15 ka BP), by which North Atlantic ocean circulation changes are found to have strong impacts on LIS dynamics. By combining simulations with a coupled climate model and a three-dimensional ice sheet model, our study illustrates how reduced NADW and AMOC weakening lead to a subsurface warming in the Nordic and Labrador Seas resulting in rapid melting of the Hudson Strait and Labrador ice shelves. Lack of buttressing by the ice shelves implies a substantial ice-stream acceleration, enhanced ice-discharge and sea level rise, with peak values 500-1500 yr after the initial AMOC reduction. Our scenario modifies the previous paradigm of H1 by solving the paradox of its occurrence during a cold surface period, and highlights the importance of taking into account the effects of oceanic circulation on ice-sheets dynamics in order to elucidate the triggering mechanism of Heinrich events.
format Article in Journal/Newspaper
author Álvarez Solas, Jorge
Montoya, M.
Ritz, C.
Ramstein, G.
Charbit, S.
Dumas, C.
Nisancioglu, K.
Dokken, T.
Ganopolski, A.
author_facet Álvarez Solas, Jorge
Montoya, M.
Ritz, C.
Ramstein, G.
Charbit, S.
Dumas, C.
Nisancioglu, K.
Dokken, T.
Ganopolski, A.
author_sort Álvarez Solas, Jorge
title Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes
title_short Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes
title_full Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes
title_fullStr Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes
title_full_unstemmed Heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes
title_sort heinrich event 1: an example of dynamical ice-sheet reaction to oceanic changes
publisher Copernicus Gesellschaft MBH
publishDate 2011
url https://eprints.ucm.es/id/eprint/24248/
https://eprints.ucm.es/id/eprint/24248/1/alvarezsolas05libre.pdf
https://doi.org/10.5194/cp-7-1297-2011
long_lat ENVELOPE(-70.000,-70.000,62.000,62.000)
geographic Hudson
Hudson Strait
geographic_facet Hudson
Hudson Strait
genre Hudson Strait
Ice Sheet
Ice Shelves
NADW
North Atlantic Deep Water
North Atlantic
genre_facet Hudson Strait
Ice Sheet
Ice Shelves
NADW
North Atlantic Deep Water
North Atlantic
op_relation https://eprints.ucm.es/id/eprint/24248/1/alvarezsolas05libre.pdf
op_rights cc_by
info:eu-repo/semantics/openAccess
op_rightsnorm CC-BY
op_doi https://doi.org/10.5194/cp-7-1297-2011
container_title Climate of the Past
container_volume 7
container_issue 4
container_start_page 1297
op_container_end_page 1306
_version_ 1766025924194598912