Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array

© 2016 IOP Publishing Ltd and Sissa Medialab srl. Artículo firmado por más de 10 autores. The IceCube Collaboration acknowledges the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation Physics Division, University of Wiscon...

Full description

Bibliographic Details
Published in:Journal of Cosmology and Astroparticle Physics
Main Authors: Arqueros Martínez, Fernando, García Pinto, Diego, Minaya Flores, Ignacio Andrés, Rosado Vélez, Jaime, Vázquez Peñas, José Ramón
Format: Article in Journal/Newspaper
Language:English
Published: IOP Publishing LTD 2016
Subjects:
Online Access:https://hdl.handle.net/20.500.14352/24426
https://doi.org/10.1088/1475-7516/2016/01/037
id ftunivcmadrid:oai:docta.ucm.es:20.500.14352/24426
record_format openpolar
institution Open Polar
collection Docta Complutense (Universidad Complutense de Madrid - UCM)
op_collection_id ftunivcmadrid
language English
topic 539.1
Galactic magnetic-field
Surface detector
Spectrum
Deflections
Performance
Física nuclear
2207 Física Atómica y Nuclear
spellingShingle 539.1
Galactic magnetic-field
Surface detector
Spectrum
Deflections
Performance
Física nuclear
2207 Física Atómica y Nuclear
Arqueros Martínez, Fernando
García Pinto, Diego
Minaya Flores, Ignacio Andrés
Rosado Vélez, Jaime
Vázquez Peñas, José Ramón
Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array
topic_facet 539.1
Galactic magnetic-field
Surface detector
Spectrum
Deflections
Performance
Física nuclear
2207 Física Atómica y Nuclear
description © 2016 IOP Publishing Ltd and Sissa Medialab srl. Artículo firmado por más de 10 autores. The IceCube Collaboration acknowledges the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF).; The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional ...
format Article in Journal/Newspaper
author Arqueros Martínez, Fernando
García Pinto, Diego
Minaya Flores, Ignacio Andrés
Rosado Vélez, Jaime
Vázquez Peñas, José Ramón
author_facet Arqueros Martínez, Fernando
García Pinto, Diego
Minaya Flores, Ignacio Andrés
Rosado Vélez, Jaime
Vázquez Peñas, José Ramón
author_sort Arqueros Martínez, Fernando
title Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array
title_short Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array
title_full Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array
title_fullStr Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array
title_full_unstemmed Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array
title_sort search for correlations between the arrival directions of icecube neutrino events and ultrahigh-energy cosmic rays detected by the pierre auger observatory and the telescope array
publisher IOP Publishing LTD
publishDate 2016
url https://hdl.handle.net/20.500.14352/24426
https://doi.org/10.1088/1475-7516/2016/01/037
long_lat ENVELOPE(66.067,66.067,-67.867,-67.867)
geographic Canada
Marsden
New Zealand
geographic_facet Canada
Marsden
New Zealand
genre National Science Foundation Office of Polar Programs
Swedish Polar Research Secretariat
genre_facet National Science Foundation Office of Polar Programs
Swedish Polar Research Secretariat
op_relation PIRSES (246806)
AUGER2FUTURE (328826)
COSMICMAG (624803)
14-17501S
LABEX ANR-10-LABX-63
PNC-IN2P3/CNRS
ERA-NET-ASPERA/01/11
ANR-11-IDEX-0004-02
ERA-NET-ASPERA/02/11
2013/08/M/ST9/00322
2013/08/M/ST9/00728
HARMONIA 5 - 2013/10/M/ST9/00062
20/2012
194/2012
PN-II-RU-PD-2011-3-0145-17
1/AS-PERA2/2012 ERA-NET
PN-II-RU-PD-2011-3-0062
83/2013
VII/37 (ULB)
[1] Pierre Auger collaboration, J. Abraham et al., Limit on the di_use ux of ultra-high energy tau neutrinos with the surface detector of the Pierre Auger Observatory, Phys. Rev. D 79 (2009) 102001 [2] Telescope Array collaboration, T. Abu-Zayyad et al., Upper limit on the ux of photons with energies above 1019 eV using the Telescope Array surface detector, Phys. Rev. D 88 (2013) 112005 [3] Pierre Auger collaboration, J. Abraham et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory, Nucl. Instrum. Meth. A 523 (2004) 50 [4] Pierre Auger collaboration, A. Aab et al., The Pierre Auger Cosmic Ray Observatory, Nucl. Instrum. Meth. A 798 (2015) 172 [5] Telescope Array collaboration, T. Abu-Zayyad et al., The surface detector array of the Telescope Array experiment, Nucl. Instrum. Meth. A 689 (2013) 87 [6] Pierre Auger collaboration, J. Abraham et al., Observation of the suppression of the ux of cosmic rays above 4 _ 1019 eV, Phys. Rev. Lett. 101 (2008) 061101 [7] Telescope Array collaboration, T. Abu-Zayyad et al., The Cosmic Ray Energy Spectrum Observed with the Surface Detector of the Telescope Array Experiment, Astrophys. J. 768 (2013) L1 [8] K. Greisen, End to the cosmic ray spectrum?, Phys. Rev. Lett. 16 (1966) 748 [9] G.T. Zatsepin and V.A. Kuz'min, Upper limit of the spectrum of cosmic rays, JETP Lett. 4 (1966) 78 [Pisma Zh. Eksp. Teor. Fiz. 4 (1966) 114] online at http://www.jetpletters.ac.ru/ps/1624/article 24846.pdf. [10] Pierre Auger collaboration, A. Aab et al., Searches for Anisotropies in the Arrival Directions of the Highest Energy Cosmic Rays Detected by the Pierre Auger Observatory, Astrophys. J. 804 (2015) 15 [11] Telescope Array collaboration, T. Abu-Zayyad et al., Correlations of the Arrival Directions of Ultra-high Energy Cosmic Rays with Extragalactic Objects as Observed by the Telescope Array Experiment, Astrophys. J. 777 (2013) 88 [12] G.R. Farrar, The Galactic magnetic _eld and ultrahigh-energy cosmic ray deections, Compt. Rendus Phys. 15 (2014) 339 [13] M. Haverkorn, Magnetic Fields in the Milky Way, in Magnetic Fields in Di_use Media, E.M. de Gouveia Dal Pino and A. Lazarian eds., Springer-Verlag Berlin Heidelberg (2015), pp. 483- 506 [14] Pierre Auger collaboration, A. Aab et al., Depth of maximum of air-shower pro_les at the Pierre Auger Observatory. I. Measurements at energies above 1017:8 eV, Phys. Rev. D 90 (2014) 122005 [15] R.U. Abbasi et al., Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode, Astropart. Phys. 64 (2014) 49 [16] IceCube collaboration, M.G. Aartsen et al., Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science 342 (2013) 1242856 [17] K. Fang, T. Fujii, T. Linden and A.V. Olinto, Is the Ultra-High Energy Cosmic-Ray Excess Observed by the Telescope Array Correlated with IceCube Neutrinos?, Astrophys. J. 794 (2014) 126 [18] R. Moharana and S. Razzaque, Angular correlation of cosmic neutrinos with ultrahigh energy cosmic rays and implications for their sources, JCAP 08 (2015) 014 [19] J.A. Carpio and A.M. Gago, Impact of Galactic magnetic _eld modelling on searches of point sources via UHECR-Neutrino correlations [20] E. Waxman and J.N. Bahcall, High-energy neutrinos from astrophysical sources: An Upper bound, Phys. Rev. D 59 (1999) 023002 [21] K. Mannheim, R.J. Protheroe and J.P. Rachen, On the cosmic ray bound for models of extragalactic neutrino production, Phys. Rev. D 63 (2001) 023003 [22] IceCube collaboration, M.G. Aartsen et al., Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data, Phys. Rev. Lett. 113 (2014) 101101 [23] C. Kopper, W. Giang and N. Kurahashi for the IceCube collaboration, Observation of Astrophysical Neutrinos in Four Years of IceCube Data, in IceCube collaboration, M.G. Aartsen et al., The IceCube Neutrino Observatory %7C Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Di_use Neutrino Searches of All Flavors, in the proceedings of the 34th International Cosmic Ray Conference (ICRC 2015), The Hague, The Netherlands, July 30 August 6 2015. [24] IceCube collaboration, M.G. Aartsen et al., Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube, Phys. Rev. Lett. 115 (2015) 081102 [25] IceCube collaboration, M.G. Aartsen et al., Searches for Extended and Point-like Neutrino Sources with Four Years of IceCube Data, Astrophys. J. 796 (2014) 109 [26] IceCube, Pierre Auger and Telescope Array collaborations, A. Christov et al., Towards a Joint Analysis of Data from the IceCube Neutrino Telescope, the Pierre Auger Observatory and Telescope Array, in the proceedings of the Ultrahigh Energy Cosmic Rays 2014, Canyon Community Center, Springdale, Utah, U.S.A., October 12-15 2014, to appear in J. Phys. Soc. Conf. Proc. [27] IceCube collaboration, A. Achterberg et al., First Year Performance of The IceCube Neutrino Telescope, Astropart. Phys. 26 (2006) 155 [28] IceCube collaboration, R. Abbasi et al., Calibration and Characterization of the IceCube Photomultiplier Tube, Nucl. Instrum. Meth. A 618 (2010) 139 [29] IceCube collaboration, R. Abbasi et al., The IceCube Data Acquisition System: Signal Capture, Digitization and Timestamping, Nucl. Instrum. Meth. A 601 (2009) 294 [30] Astrophysical muon neutrino ux in the northern sky with 2 years of IceCube data (released 20 Aug 2015), https://icecube.wisc.edu/science/data/HE NuMu di_use. [31] IceCube collaboration, M.G. Aartsen et al., Search for Time-independent Neutrino Emission from Astrophysical Sources with 3 yr of IceCube Data, Astrophys. J. 779 (2013) 132 [32] IceCube collaboration, R. Abbasi et al., Time-Integrated Searches for Point-like Sources of Neutrinos with the 40-String IceCube Detector, Astrophys. J. 732 (2011) 18 [33] C. Bonifazi for the Pierre Auger collaboration, The angular resolution of the Pierre Auger Observatory, Nucl. Phys. Proc. Suppl. 190 (2009) 20 [34] M. Ave for the Pierre Auger collaboration, Reconstruction accuracy of the surface detector array of the Pierre Auger Observatory, in the proceedings of the 30th International Cosmic Ray Conference (ICRC 2007), Merida, Yucatan, Mexico, July 3-11 2007 [35] Pierre Auger collaboration, A. Aab et al., Reconstruction of inclined air showers detected with the Pierre Auger Observatory, JCAP 08 (2014) 019 [36] V. Verzi for the Pierre Auger collaboration, The Energy Scale of the Pierre Auger Observatory, in Pierre Auger collaboration, A. Aab et al., The Pierre Auger Observatory: Contributions to the 33rd International Cosmic Ray Conference (ICRC 2013), in the proceedings of the 33rd International Cosmic Ray Conference (ICRC 2013), Rio de Janeiro, Brazil, July 2-9 2013. [37] R. Pesce for the Pierre Auger collaboration, Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory: an update, in Pierre Auger collaboration, P. Abreu et al., The Pierre Auger Observatory I: The Cosmic Ray Energy Spectrum and Related Measurements, in the proceedings of the 32nd International Cosmic Ray Conference (ICRC 2011), Beijing, China, August 11-18 2011. [38] Pierre Auger collaboration, J. Abraham et al., Trigger and aperture of the surface detector array of the Pierre Auger Observatory, Nucl. Instrum. Meth. A 613 (2010) 29 [39] Telescope Array collaboration, R.U. Abbasi et al., Indications of Intermediate-Scale Anisotropy of Cosmic Rays with Energy Greater Than 57 EeV in the Northern Sky Measured with the Surface Detector of the Telescope Array Experiment, Astrophys. J. 790 (2014) L21 [40] Telescope Array and Pierre Auger collaborations, I. Maris, High Energy Spectrum Working Group Report: The energy spectrum of ultra high energy cosmic rays, in the proceedings of the Ultrahigh Energy Cosmic Rays 2014, Canyon Community Center, Springdale, Utah, U.S.A., October 12-15 2014, to appear in J. Phys. Soc. Conf. Proc. [41] P.P. Kronberg, Extragalactic magnetic _elds, Rept. Prog. Phys. 57 (1994) 325 [42] R. Durrer and A. Neronov, Cosmological Magnetic Fields: Their Generation, Evolution and Observation, Astron. Astrophys. Rev. 21 (2013) 62 [43] M.S. Pshirkov, P.G. Tinyakov and F.R. Urban, New limits on extragalactic magnetic _elds from rotation measures [44] M.S. Pshirkov, P.G. Tinyakov, P.P. Kronberg and K.J. Newton-McGee, Deriving global structure of the Galactic Magnetic Field from Faraday Rotation Measures of extragalactic sources, Astrophys. J. 738 (2011) 192 [45] R. Jansson and G.R. Farrar, A New Model of the Galactic Magnetic Field, Astrophys. J. 757 (2012) 14 [46] P.G. Tinyakov and I.I. Tkachev, Deections of cosmic rays in a random component of the Galactic magnetic _eld, Astropart. Phys. 24 (2005) 32 [47] Pierre Auger collaboration, P. Abreu et al., Measurement of the Cosmic Ray Energy Spectrum Using Hybrid Events of the Pierre Auger Observatory, Eur. Phys. J. Plus 127 (2012) 87 [48] Telescope Array collaboration, D. Ivanov, High Energy Spectrum Measured by the Telescope Array Experiment, in the proceedings of the Ultrahigh Energy Cosmic Rays 2014, Canyon Community Center, Springdale, Utah, U.S.A., October 12{15 2014, to appear in J. Phys. Soc. Conf. Proc. [49] S.S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses, Ann. Math. Statist. 9 (1938) 60 [50] J. Braun, J. Dumm, F. De Palma, C. Finley, A. Karle and T. Montaruli, Methods for point source analysis in high energy neutrino telescopes, Astropart. Phys. 29 (2008) 299
https://hdl.handle.net/20.500.14352/24426
1475-7516
doi:10.1088/1475-7516/2016/01/037
op_rights open access
op_doi https://doi.org/20.500.14352/2442610.1088/1475-7516/2016/01/037
container_title Journal of Cosmology and Astroparticle Physics
container_volume 2016
container_issue 01
container_start_page 037
op_container_end_page 037
_version_ 1811641267798409216
spelling ftunivcmadrid:oai:docta.ucm.es:20.500.14352/24426 2024-09-30T14:38:38+00:00 Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger Observatory and the Telescope Array Arqueros Martínez, Fernando García Pinto, Diego Minaya Flores, Ignacio Andrés Rosado Vélez, Jaime Vázquez Peñas, José Ramón 2016-01 application/pdf https://hdl.handle.net/20.500.14352/24426 https://doi.org/10.1088/1475-7516/2016/01/037 eng eng IOP Publishing LTD PIRSES (246806) AUGER2FUTURE (328826) COSMICMAG (624803) 14-17501S LABEX ANR-10-LABX-63 PNC-IN2P3/CNRS ERA-NET-ASPERA/01/11 ANR-11-IDEX-0004-02 ERA-NET-ASPERA/02/11 2013/08/M/ST9/00322 2013/08/M/ST9/00728 HARMONIA 5 - 2013/10/M/ST9/00062 20/2012 194/2012 PN-II-RU-PD-2011-3-0145-17 1/AS-PERA2/2012 ERA-NET PN-II-RU-PD-2011-3-0062 83/2013 VII/37 (ULB) [1] Pierre Auger collaboration, J. Abraham et al., Limit on the di_use ux of ultra-high energy tau neutrinos with the surface detector of the Pierre Auger Observatory, Phys. Rev. D 79 (2009) 102001 [2] Telescope Array collaboration, T. Abu-Zayyad et al., Upper limit on the ux of photons with energies above 1019 eV using the Telescope Array surface detector, Phys. Rev. D 88 (2013) 112005 [3] Pierre Auger collaboration, J. Abraham et al., Properties and performance of the prototype instrument for the Pierre Auger Observatory, Nucl. Instrum. Meth. A 523 (2004) 50 [4] Pierre Auger collaboration, A. Aab et al., The Pierre Auger Cosmic Ray Observatory, Nucl. Instrum. Meth. A 798 (2015) 172 [5] Telescope Array collaboration, T. Abu-Zayyad et al., The surface detector array of the Telescope Array experiment, Nucl. Instrum. Meth. A 689 (2013) 87 [6] Pierre Auger collaboration, J. Abraham et al., Observation of the suppression of the ux of cosmic rays above 4 _ 1019 eV, Phys. Rev. Lett. 101 (2008) 061101 [7] Telescope Array collaboration, T. Abu-Zayyad et al., The Cosmic Ray Energy Spectrum Observed with the Surface Detector of the Telescope Array Experiment, Astrophys. J. 768 (2013) L1 [8] K. Greisen, End to the cosmic ray spectrum?, Phys. Rev. Lett. 16 (1966) 748 [9] G.T. Zatsepin and V.A. Kuz'min, Upper limit of the spectrum of cosmic rays, JETP Lett. 4 (1966) 78 [Pisma Zh. Eksp. Teor. Fiz. 4 (1966) 114] online at http://www.jetpletters.ac.ru/ps/1624/article 24846.pdf. [10] Pierre Auger collaboration, A. Aab et al., Searches for Anisotropies in the Arrival Directions of the Highest Energy Cosmic Rays Detected by the Pierre Auger Observatory, Astrophys. J. 804 (2015) 15 [11] Telescope Array collaboration, T. Abu-Zayyad et al., Correlations of the Arrival Directions of Ultra-high Energy Cosmic Rays with Extragalactic Objects as Observed by the Telescope Array Experiment, Astrophys. J. 777 (2013) 88 [12] G.R. Farrar, The Galactic magnetic _eld and ultrahigh-energy cosmic ray deections, Compt. Rendus Phys. 15 (2014) 339 [13] M. Haverkorn, Magnetic Fields in the Milky Way, in Magnetic Fields in Di_use Media, E.M. de Gouveia Dal Pino and A. Lazarian eds., Springer-Verlag Berlin Heidelberg (2015), pp. 483- 506 [14] Pierre Auger collaboration, A. Aab et al., Depth of maximum of air-shower pro_les at the Pierre Auger Observatory. I. Measurements at energies above 1017:8 eV, Phys. Rev. D 90 (2014) 122005 [15] R.U. Abbasi et al., Study of Ultra-High Energy Cosmic Ray composition using Telescope Array's Middle Drum detector and surface array in hybrid mode, Astropart. Phys. 64 (2014) 49 [16] IceCube collaboration, M.G. Aartsen et al., Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector, Science 342 (2013) 1242856 [17] K. Fang, T. Fujii, T. Linden and A.V. Olinto, Is the Ultra-High Energy Cosmic-Ray Excess Observed by the Telescope Array Correlated with IceCube Neutrinos?, Astrophys. J. 794 (2014) 126 [18] R. Moharana and S. Razzaque, Angular correlation of cosmic neutrinos with ultrahigh energy cosmic rays and implications for their sources, JCAP 08 (2015) 014 [19] J.A. Carpio and A.M. Gago, Impact of Galactic magnetic _eld modelling on searches of point sources via UHECR-Neutrino correlations [20] E. Waxman and J.N. Bahcall, High-energy neutrinos from astrophysical sources: An Upper bound, Phys. Rev. D 59 (1999) 023002 [21] K. Mannheim, R.J. Protheroe and J.P. Rachen, On the cosmic ray bound for models of extragalactic neutrino production, Phys. Rev. D 63 (2001) 023003 [22] IceCube collaboration, M.G. Aartsen et al., Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data, Phys. Rev. Lett. 113 (2014) 101101 [23] C. Kopper, W. Giang and N. Kurahashi for the IceCube collaboration, Observation of Astrophysical Neutrinos in Four Years of IceCube Data, in IceCube collaboration, M.G. Aartsen et al., The IceCube Neutrino Observatory %7C Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Di_use Neutrino Searches of All Flavors, in the proceedings of the 34th International Cosmic Ray Conference (ICRC 2015), The Hague, The Netherlands, July 30 August 6 2015. [24] IceCube collaboration, M.G. Aartsen et al., Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube, Phys. Rev. Lett. 115 (2015) 081102 [25] IceCube collaboration, M.G. Aartsen et al., Searches for Extended and Point-like Neutrino Sources with Four Years of IceCube Data, Astrophys. J. 796 (2014) 109 [26] IceCube, Pierre Auger and Telescope Array collaborations, A. Christov et al., Towards a Joint Analysis of Data from the IceCube Neutrino Telescope, the Pierre Auger Observatory and Telescope Array, in the proceedings of the Ultrahigh Energy Cosmic Rays 2014, Canyon Community Center, Springdale, Utah, U.S.A., October 12-15 2014, to appear in J. Phys. Soc. Conf. Proc. [27] IceCube collaboration, A. Achterberg et al., First Year Performance of The IceCube Neutrino Telescope, Astropart. Phys. 26 (2006) 155 [28] IceCube collaboration, R. Abbasi et al., Calibration and Characterization of the IceCube Photomultiplier Tube, Nucl. Instrum. Meth. A 618 (2010) 139 [29] IceCube collaboration, R. Abbasi et al., The IceCube Data Acquisition System: Signal Capture, Digitization and Timestamping, Nucl. Instrum. Meth. A 601 (2009) 294 [30] Astrophysical muon neutrino ux in the northern sky with 2 years of IceCube data (released 20 Aug 2015), https://icecube.wisc.edu/science/data/HE NuMu di_use. [31] IceCube collaboration, M.G. Aartsen et al., Search for Time-independent Neutrino Emission from Astrophysical Sources with 3 yr of IceCube Data, Astrophys. J. 779 (2013) 132 [32] IceCube collaboration, R. Abbasi et al., Time-Integrated Searches for Point-like Sources of Neutrinos with the 40-String IceCube Detector, Astrophys. J. 732 (2011) 18 [33] C. Bonifazi for the Pierre Auger collaboration, The angular resolution of the Pierre Auger Observatory, Nucl. Phys. Proc. Suppl. 190 (2009) 20 [34] M. Ave for the Pierre Auger collaboration, Reconstruction accuracy of the surface detector array of the Pierre Auger Observatory, in the proceedings of the 30th International Cosmic Ray Conference (ICRC 2007), Merida, Yucatan, Mexico, July 3-11 2007 [35] Pierre Auger collaboration, A. Aab et al., Reconstruction of inclined air showers detected with the Pierre Auger Observatory, JCAP 08 (2014) 019 [36] V. Verzi for the Pierre Auger collaboration, The Energy Scale of the Pierre Auger Observatory, in Pierre Auger collaboration, A. Aab et al., The Pierre Auger Observatory: Contributions to the 33rd International Cosmic Ray Conference (ICRC 2013), in the proceedings of the 33rd International Cosmic Ray Conference (ICRC 2013), Rio de Janeiro, Brazil, July 2-9 2013. [37] R. Pesce for the Pierre Auger collaboration, Energy calibration of data recorded with the surface detectors of the Pierre Auger Observatory: an update, in Pierre Auger collaboration, P. Abreu et al., The Pierre Auger Observatory I: The Cosmic Ray Energy Spectrum and Related Measurements, in the proceedings of the 32nd International Cosmic Ray Conference (ICRC 2011), Beijing, China, August 11-18 2011. [38] Pierre Auger collaboration, J. Abraham et al., Trigger and aperture of the surface detector array of the Pierre Auger Observatory, Nucl. Instrum. Meth. A 613 (2010) 29 [39] Telescope Array collaboration, R.U. Abbasi et al., Indications of Intermediate-Scale Anisotropy of Cosmic Rays with Energy Greater Than 57 EeV in the Northern Sky Measured with the Surface Detector of the Telescope Array Experiment, Astrophys. J. 790 (2014) L21 [40] Telescope Array and Pierre Auger collaborations, I. Maris, High Energy Spectrum Working Group Report: The energy spectrum of ultra high energy cosmic rays, in the proceedings of the Ultrahigh Energy Cosmic Rays 2014, Canyon Community Center, Springdale, Utah, U.S.A., October 12-15 2014, to appear in J. Phys. Soc. Conf. Proc. [41] P.P. Kronberg, Extragalactic magnetic _elds, Rept. Prog. Phys. 57 (1994) 325 [42] R. Durrer and A. Neronov, Cosmological Magnetic Fields: Their Generation, Evolution and Observation, Astron. Astrophys. Rev. 21 (2013) 62 [43] M.S. Pshirkov, P.G. Tinyakov and F.R. Urban, New limits on extragalactic magnetic _elds from rotation measures [44] M.S. Pshirkov, P.G. Tinyakov, P.P. Kronberg and K.J. Newton-McGee, Deriving global structure of the Galactic Magnetic Field from Faraday Rotation Measures of extragalactic sources, Astrophys. J. 738 (2011) 192 [45] R. Jansson and G.R. Farrar, A New Model of the Galactic Magnetic Field, Astrophys. J. 757 (2012) 14 [46] P.G. Tinyakov and I.I. Tkachev, Deections of cosmic rays in a random component of the Galactic magnetic _eld, Astropart. Phys. 24 (2005) 32 [47] Pierre Auger collaboration, P. Abreu et al., Measurement of the Cosmic Ray Energy Spectrum Using Hybrid Events of the Pierre Auger Observatory, Eur. Phys. J. Plus 127 (2012) 87 [48] Telescope Array collaboration, D. Ivanov, High Energy Spectrum Measured by the Telescope Array Experiment, in the proceedings of the Ultrahigh Energy Cosmic Rays 2014, Canyon Community Center, Springdale, Utah, U.S.A., October 12{15 2014, to appear in J. Phys. Soc. Conf. Proc. [49] S.S. Wilks, The Large-Sample Distribution of the Likelihood Ratio for Testing Composite Hypotheses, Ann. Math. Statist. 9 (1938) 60 [50] J. Braun, J. Dumm, F. De Palma, C. Finley, A. Karle and T. Montaruli, Methods for point source analysis in high energy neutrino telescopes, Astropart. Phys. 29 (2008) 299 https://hdl.handle.net/20.500.14352/24426 1475-7516 doi:10.1088/1475-7516/2016/01/037 open access 539.1 Galactic magnetic-field Surface detector Spectrum Deflections Performance Física nuclear 2207 Física Atómica y Nuclear journal article 2016 ftunivcmadrid https://doi.org/20.500.14352/2442610.1088/1475-7516/2016/01/037 2024-09-06T00:11:47Z © 2016 IOP Publishing Ltd and Sissa Medialab srl. Artículo firmado por más de 10 autores. The IceCube Collaboration acknowledges the support from the following agencies: U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation Physics Division, University of Wisconsin Alumni Research Foundation, the Grid Laboratory Of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin Madison, the Open Science Grid (OSG) grid infrastructure; U.S. Department of Energy, and National Energy Research Scientific Computing Center, the Louisiana Optical Network Initiative (LONI) grid computing resources; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Research Department of Plasmas with Complex Interactions (Bochum), Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); University of Oxford, United Kingdom; Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Danish National Research Foundation, Denmark (DNRF).; The successful installation, commissioning, and operation of the Pierre Auger Observatory would not have been possible without the strong commitment and effort from the technical and administrative staff in Malargue. We are very grateful to the following agencies and organizations for financial support: Comision Nacional de Energia Atomica, Agencia Nacional de Promocion Cientifica y Tecnologica (ANPCyT), Consejo Nacional ... Article in Journal/Newspaper National Science Foundation Office of Polar Programs Swedish Polar Research Secretariat Docta Complutense (Universidad Complutense de Madrid - UCM) Canada Marsden ENVELOPE(66.067,66.067,-67.867,-67.867) New Zealand Journal of Cosmology and Astroparticle Physics 2016 01 037 037