Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal
Increased Southern Ocean productivity driven by sea-ice feedbacks contributed to a slowdown in rising CO(2)levels during the last deglaciation, according to analyses of marine-derived aerosols from an Antarctic ice core. The Southern Ocean occupies 14% of the Earth's surface and plays a fundame...
Published in: | Nature Geoscience |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Nature
2020
|
Subjects: | |
Online Access: | https://doi.org/10.1038/s41561-020-0587-0 https://repositorio.uchile.cl/handle/2250/176350 |
id |
ftunivchile:oai:repositorio.uchile.cl:2250/176350 |
---|---|
record_format |
openpolar |
spelling |
ftunivchile:oai:repositorio.uchile.cl:2250/176350 2023-05-15T14:01:29+02:00 Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal Fogwill, C. J. Turney, C. S. M. Menviel, L. Baker, A. Weber, M. E. Ellis, B. Thomas, Z. A. Golledge, N. R. Etheridge, D. Rubino, M. Thornton, D. P. van Ommen, T. D. Moy, A. D. Curran, M. A. J. Davies, S. Bird, M., I Munksgaard, N. C. Rootes, C. M. Millman, H. Vohra, J. Rivera, A. Mackintosh, A. Pike, J. Hall, I. R. Bagshaw, E. A. Rainsley, E. Bronk-Ramsey, C. Montenari, M. Cage, A. G. Harris, M. R. P. Jones, R. Power, A. Love, J. Young, J. Weyrich, L. S. Cooper, A. 2020 application/pdf https://doi.org/10.1038/s41561-020-0587-0 https://repositorio.uchile.cl/handle/2250/176350 en eng Nature Nature Geoscience %7C Vol 13 %7C July 2020 %7C 489–497 doi:10.1038/s41561-020-0587-0 https://repositorio.uchile.cl/handle/2250/176350 Attribution-NonCommercial-NoDerivs 3.0 Chile http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ CC-BY-NC-ND Nature Geoscience Atmospheric CO2 Organic-carbon Climate record Patriot hills Productivity Cycle Fertilization Variability Pleistocene Trends Artículo de revista 2020 ftunivchile https://doi.org/10.1038/s41561-020-0587-0 2022-12-25T00:50:16Z Increased Southern Ocean productivity driven by sea-ice feedbacks contributed to a slowdown in rising CO(2)levels during the last deglaciation, according to analyses of marine-derived aerosols from an Antarctic ice core. The Southern Ocean occupies 14% of the Earth's surface and plays a fundamental role in the global carbon cycle and climate. It provides a direct connection to the deep ocean carbon reservoir through biogeochemical processes that include surface primary productivity, remineralization at depth and the upwelling of carbon-rich water masses. However, the role of these different processes in modulating past and future air-sea carbon flux remains poorly understood. A key period in this regard is the Antarctic Cold Reversal (ACR, 14.6-12.7 kyrbp), when mid- to high-latitude Southern Hemisphere cooling coincided with a sustained plateau in the global deglacial increase in atmospheric CO2. Here we reconstruct high-latitude Southern Ocean surface productivity from marine-derived aerosols captured in a highly resolved horizontal ice core. Our multiproxy reconstruction reveals a sustained signal of enhanced marine productivity across the ACR. Transient climate modelling indicates this period coincided with maximum seasonal variability in sea-ice extent, implying that sea-ice biological feedbacks enhanced CO(2)sequestration and created a substantial regional marine carbon sink, which contributed to the plateau in CO(2)during the ACR. Our results highlight the role Antarctic sea ice plays in controlling global CO2, and demonstrate the need to incorporate such feedbacks into climate-carbon models. Australian Research Council Royal Society of NZ fellowships Linkage Partner Antarctic Logistics and Expeditions LP120200724 Australian Climate Change Science Program (ACCSP), an Australian Government Initiative Coleg Cymraeg Cenedlaethol European Research Council (ERC) 25923 German Research Foundation (DFG) We2039/8-1 Keele University Article in Journal/Newspaper Antarc* Antarctic ice core Sea ice Southern Ocean Universidad de Chile: Repositorio académico Antarctic Patriot Hills ENVELOPE(-81.333,-81.333,-80.333,-80.333) Southern Ocean The Antarctic Nature Geoscience 13 7 489 497 |
institution |
Open Polar |
collection |
Universidad de Chile: Repositorio académico |
op_collection_id |
ftunivchile |
language |
English |
topic |
Atmospheric CO2 Organic-carbon Climate record Patriot hills Productivity Cycle Fertilization Variability Pleistocene Trends |
spellingShingle |
Atmospheric CO2 Organic-carbon Climate record Patriot hills Productivity Cycle Fertilization Variability Pleistocene Trends Fogwill, C. J. Turney, C. S. M. Menviel, L. Baker, A. Weber, M. E. Ellis, B. Thomas, Z. A. Golledge, N. R. Etheridge, D. Rubino, M. Thornton, D. P. van Ommen, T. D. Moy, A. D. Curran, M. A. J. Davies, S. Bird, M., I Munksgaard, N. C. Rootes, C. M. Millman, H. Vohra, J. Rivera, A. Mackintosh, A. Pike, J. Hall, I. R. Bagshaw, E. A. Rainsley, E. Bronk-Ramsey, C. Montenari, M. Cage, A. G. Harris, M. R. P. Jones, R. Power, A. Love, J. Young, J. Weyrich, L. S. Cooper, A. Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal |
topic_facet |
Atmospheric CO2 Organic-carbon Climate record Patriot hills Productivity Cycle Fertilization Variability Pleistocene Trends |
description |
Increased Southern Ocean productivity driven by sea-ice feedbacks contributed to a slowdown in rising CO(2)levels during the last deglaciation, according to analyses of marine-derived aerosols from an Antarctic ice core. The Southern Ocean occupies 14% of the Earth's surface and plays a fundamental role in the global carbon cycle and climate. It provides a direct connection to the deep ocean carbon reservoir through biogeochemical processes that include surface primary productivity, remineralization at depth and the upwelling of carbon-rich water masses. However, the role of these different processes in modulating past and future air-sea carbon flux remains poorly understood. A key period in this regard is the Antarctic Cold Reversal (ACR, 14.6-12.7 kyrbp), when mid- to high-latitude Southern Hemisphere cooling coincided with a sustained plateau in the global deglacial increase in atmospheric CO2. Here we reconstruct high-latitude Southern Ocean surface productivity from marine-derived aerosols captured in a highly resolved horizontal ice core. Our multiproxy reconstruction reveals a sustained signal of enhanced marine productivity across the ACR. Transient climate modelling indicates this period coincided with maximum seasonal variability in sea-ice extent, implying that sea-ice biological feedbacks enhanced CO(2)sequestration and created a substantial regional marine carbon sink, which contributed to the plateau in CO(2)during the ACR. Our results highlight the role Antarctic sea ice plays in controlling global CO2, and demonstrate the need to incorporate such feedbacks into climate-carbon models. Australian Research Council Royal Society of NZ fellowships Linkage Partner Antarctic Logistics and Expeditions LP120200724 Australian Climate Change Science Program (ACCSP), an Australian Government Initiative Coleg Cymraeg Cenedlaethol European Research Council (ERC) 25923 German Research Foundation (DFG) We2039/8-1 Keele University |
format |
Article in Journal/Newspaper |
author |
Fogwill, C. J. Turney, C. S. M. Menviel, L. Baker, A. Weber, M. E. Ellis, B. Thomas, Z. A. Golledge, N. R. Etheridge, D. Rubino, M. Thornton, D. P. van Ommen, T. D. Moy, A. D. Curran, M. A. J. Davies, S. Bird, M., I Munksgaard, N. C. Rootes, C. M. Millman, H. Vohra, J. Rivera, A. Mackintosh, A. Pike, J. Hall, I. R. Bagshaw, E. A. Rainsley, E. Bronk-Ramsey, C. Montenari, M. Cage, A. G. Harris, M. R. P. Jones, R. Power, A. Love, J. Young, J. Weyrich, L. S. Cooper, A. |
author_facet |
Fogwill, C. J. Turney, C. S. M. Menviel, L. Baker, A. Weber, M. E. Ellis, B. Thomas, Z. A. Golledge, N. R. Etheridge, D. Rubino, M. Thornton, D. P. van Ommen, T. D. Moy, A. D. Curran, M. A. J. Davies, S. Bird, M., I Munksgaard, N. C. Rootes, C. M. Millman, H. Vohra, J. Rivera, A. Mackintosh, A. Pike, J. Hall, I. R. Bagshaw, E. A. Rainsley, E. Bronk-Ramsey, C. Montenari, M. Cage, A. G. Harris, M. R. P. Jones, R. Power, A. Love, J. Young, J. Weyrich, L. S. Cooper, A. |
author_sort |
Fogwill, C. J. |
title |
Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal |
title_short |
Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal |
title_full |
Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal |
title_fullStr |
Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal |
title_full_unstemmed |
Southern Ocean carbon sink enhanced by sea-ice feedbacks at the Antarctic Cold Reversal |
title_sort |
southern ocean carbon sink enhanced by sea-ice feedbacks at the antarctic cold reversal |
publisher |
Nature |
publishDate |
2020 |
url |
https://doi.org/10.1038/s41561-020-0587-0 https://repositorio.uchile.cl/handle/2250/176350 |
long_lat |
ENVELOPE(-81.333,-81.333,-80.333,-80.333) |
geographic |
Antarctic Patriot Hills Southern Ocean The Antarctic |
geographic_facet |
Antarctic Patriot Hills Southern Ocean The Antarctic |
genre |
Antarc* Antarctic ice core Sea ice Southern Ocean |
genre_facet |
Antarc* Antarctic ice core Sea ice Southern Ocean |
op_source |
Nature Geoscience |
op_relation |
Nature Geoscience %7C Vol 13 %7C July 2020 %7C 489–497 doi:10.1038/s41561-020-0587-0 https://repositorio.uchile.cl/handle/2250/176350 |
op_rights |
Attribution-NonCommercial-NoDerivs 3.0 Chile http://creativecommons.org/licenses/by-nc-nd/3.0/cl/ |
op_rightsnorm |
CC-BY-NC-ND |
op_doi |
https://doi.org/10.1038/s41561-020-0587-0 |
container_title |
Nature Geoscience |
container_volume |
13 |
container_issue |
7 |
container_start_page |
489 |
op_container_end_page |
497 |
_version_ |
1766271332086972416 |