Lycopsid forests in the early Late Devonian paleoequatorial zone of Svalbard

The Middle to early Late Devonian transition from diminutive plants to the first forests is a key episode in terrestrialization. The two major plant groups currently recognized in such “transitional forests” are pseudosporochnaleans (small to medium trees showing some morphological similarity to liv...

Full description

Bibliographic Details
Published in:Geology
Main Authors: Berry, Christopher M., Marshall, John E. A.
Format: Article in Journal/Newspaper
Language:English
Published: Geological Society of America 2015
Subjects:
Online Access:https://orca.cardiff.ac.uk/id/eprint/81746/
https://doi.org/10.1130/G37000.1
https://orca.cardiff.ac.uk/id/eprint/81746/1/Geology-2015-Berry-1043-6.pdf
Description
Summary:The Middle to early Late Devonian transition from diminutive plants to the first forests is a key episode in terrestrialization. The two major plant groups currently recognized in such “transitional forests” are pseudosporochnaleans (small to medium trees showing some morphological similarity to living tree ferns and palms) and archaeopteridaleans (trees with woody trunks and leafy branches probably related to living conifers). Here we report a new type of “transitional” in-situ Devonian forest based on lycopsid fossils from the Plantekløfta Formation, Munindalen, Svalbard. Previously regarded as very latest Devonian (latest Famennian, 360 Ma), their age, based on palynology, is early Frasnian (ca. 380 Ma). In-situ trees are represented by internal casts of arborescent lycopsids with cormose bases and small ribbon-like roots occurring in dense stands spaced ∼15–20 cm apart, here identified as Protolepidodendropsis pulchra Høeg. This plant also occurs as compression fossils throughout most of the late Givetian–early Frasnian Mimerdalen Subgroup. The lycopsids grew in wet soils in a localized, rapidly subsiding, short-lived basin. Importantly, this new type of Middle to early Late Devonian forest is paleoequatorial and hence tropical. This high-tree-density tropical vegetation may have promoted rapid weathering of soils, and hence enhanced carbon dioxide drawdown, when compared with other contemporary and more high-latitude forests.