The δ53Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth

Data on the chromium stable isotope composition of planetary reservoirs have the potential to provide information about core formation, partial melting and conditions of the Moon formation. In order to detect the small Cr isotopic differences between various reservoirs in the solar system, their com...

Full description

Bibliographic Details
Published in:Chemical Geology
Main Authors: Jerram, Matthew, Bonnand, Pierre, Kerr, Andrew C., Nisbet, Euan G., Puchtel, Igor S., Halliday, Alex N.
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2020
Subjects:
Online Access:https://orca.cardiff.ac.uk/id/eprint/133158/
https://doi.org/10.1016/j.chemgeo.2020.119761
https://orca.cardiff.ac.uk/id/eprint/133158/1/Jerram%20et%20al.%202020.pdf
id ftunivcardiff:oai:https://orca.cardiff.ac.uk:133158
record_format openpolar
spelling ftunivcardiff:oai:https://orca.cardiff.ac.uk:133158 2023-12-17T10:30:05+01:00 The δ53Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth Jerram, Matthew Bonnand, Pierre Kerr, Andrew C. Nisbet, Euan G. Puchtel, Igor S. Halliday, Alex N. 2020-09-30 application/pdf https://orca.cardiff.ac.uk/id/eprint/133158/ https://doi.org/10.1016/j.chemgeo.2020.119761 https://orca.cardiff.ac.uk/id/eprint/133158/1/Jerram%20et%20al.%202020.pdf en eng Elsevier https://orca.cardiff.ac.uk/id/eprint/133158/1/Jerram%20et%20al.%202020.pdf Jerram, Matthew, Bonnand, Pierre, Kerr, Andrew C. https://orca.cardiff.ac.uk/view/cardiffauthors/A0488436.html orcid:0000-0001-5569-4730 orcid:0000-0001-5569-4730, Nisbet, Euan G., Puchtel, Igor S. and Halliday, Alex N. 2020. The δ53Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth. Chemical Geology 551 , 119761. 10.1016/j.chemgeo.2020.119761 https://doi.org/10.1016/j.chemgeo.2020.119761 file https://orca.cardiff.ac.uk/id/eprint/133158/1/Jerram%20et%20al.%202020.pdf doi:10.1016/j.chemgeo.2020.119761 cc_by_nc_nd Article PeerReviewed 2020 ftunivcardiff https://doi.org/10.1016/j.chemgeo.2020.119761 2023-11-23T23:34:08Z Data on the chromium stable isotope composition of planetary reservoirs have the potential to provide information about core formation, partial melting and conditions of the Moon formation. In order to detect the small Cr isotopic differences between various reservoirs in the solar system, their compositions need to be precisely constrained. The current BSE value of δ53Cr = −0.11 ± 0.06‰ (Sossi et al., 2018) cannot resolve differences between achondrites, (Vesta δ53Cr = −0.17 ± 0.05‰) and chondrites (carbonaceous δ53Cr = −0.12 ± 0.05‰; ordinary δ53Cr = −0.11 ± 0.04‰). The composition of the bulk silicate Earth (BSE) is often used as a reference point for comparisons to other planetary reservoirs. However, past attempts to estimate the Cr isotopic composition of the BSE have been unable to provide a well-constrained BSE value. Traditional methods, using mantle peridotites, are affected by the susceptibility of Cr isotopes to fractionation during metasomatism. More recently, the Cr isotope composition of the BSE has been calculated using komatiites, in addition to mantle peridotites, to produce a more precise value (Sossi et al., 2018). In order to constrain the BSE composition to a higher precision, the δ53Cr of remarkably fresh komatiite lava flows from three localities, ranging in age from 2.7 Ga to 89 Ma, have been investigated in detail. These included the Tony's Flow in the Belingwe Greenstone Belt, Zimbabwe, the Victoria's Lava Lake in Fennoscandia, and komatiites from Gorgona Island in Colombia.In the komatiites studied, a range in Cr isotopic compositions was found, from δ53Cr = −0.16 ± 0.02 to −0.01 ± 0.02‰. We show that the high degrees of partial melting that produced the komatiites, did not result in Cr isotopic fractionation between the komatiitic melt and mantle residue. However, limited Cr isotopic fractionation is found to be a consequence of komatiite lava differentiation. For the lava flows with high Mg content and high Cr2+/ƩCrTOT (the molar ratio of Cr2+/(Cr2+ + Cr3+)), such as Tony's Flow and ... Article in Journal/Newspaper Fennoscandia Cardiff University: ORCA (Online Research @ Cardiff) Lava Lake ENVELOPE(-128.996,-128.996,55.046,55.046) Chemical Geology 551 119761
institution Open Polar
collection Cardiff University: ORCA (Online Research @ Cardiff)
op_collection_id ftunivcardiff
language English
description Data on the chromium stable isotope composition of planetary reservoirs have the potential to provide information about core formation, partial melting and conditions of the Moon formation. In order to detect the small Cr isotopic differences between various reservoirs in the solar system, their compositions need to be precisely constrained. The current BSE value of δ53Cr = −0.11 ± 0.06‰ (Sossi et al., 2018) cannot resolve differences between achondrites, (Vesta δ53Cr = −0.17 ± 0.05‰) and chondrites (carbonaceous δ53Cr = −0.12 ± 0.05‰; ordinary δ53Cr = −0.11 ± 0.04‰). The composition of the bulk silicate Earth (BSE) is often used as a reference point for comparisons to other planetary reservoirs. However, past attempts to estimate the Cr isotopic composition of the BSE have been unable to provide a well-constrained BSE value. Traditional methods, using mantle peridotites, are affected by the susceptibility of Cr isotopes to fractionation during metasomatism. More recently, the Cr isotope composition of the BSE has been calculated using komatiites, in addition to mantle peridotites, to produce a more precise value (Sossi et al., 2018). In order to constrain the BSE composition to a higher precision, the δ53Cr of remarkably fresh komatiite lava flows from three localities, ranging in age from 2.7 Ga to 89 Ma, have been investigated in detail. These included the Tony's Flow in the Belingwe Greenstone Belt, Zimbabwe, the Victoria's Lava Lake in Fennoscandia, and komatiites from Gorgona Island in Colombia.In the komatiites studied, a range in Cr isotopic compositions was found, from δ53Cr = −0.16 ± 0.02 to −0.01 ± 0.02‰. We show that the high degrees of partial melting that produced the komatiites, did not result in Cr isotopic fractionation between the komatiitic melt and mantle residue. However, limited Cr isotopic fractionation is found to be a consequence of komatiite lava differentiation. For the lava flows with high Mg content and high Cr2+/ƩCrTOT (the molar ratio of Cr2+/(Cr2+ + Cr3+)), such as Tony's Flow and ...
format Article in Journal/Newspaper
author Jerram, Matthew
Bonnand, Pierre
Kerr, Andrew C.
Nisbet, Euan G.
Puchtel, Igor S.
Halliday, Alex N.
spellingShingle Jerram, Matthew
Bonnand, Pierre
Kerr, Andrew C.
Nisbet, Euan G.
Puchtel, Igor S.
Halliday, Alex N.
The δ53Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth
author_facet Jerram, Matthew
Bonnand, Pierre
Kerr, Andrew C.
Nisbet, Euan G.
Puchtel, Igor S.
Halliday, Alex N.
author_sort Jerram, Matthew
title The δ53Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth
title_short The δ53Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth
title_full The δ53Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth
title_fullStr The δ53Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth
title_full_unstemmed The δ53Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth
title_sort δ53cr isotope composition of komatiite flows and implications for the composition of the bulk silicate earth
publisher Elsevier
publishDate 2020
url https://orca.cardiff.ac.uk/id/eprint/133158/
https://doi.org/10.1016/j.chemgeo.2020.119761
https://orca.cardiff.ac.uk/id/eprint/133158/1/Jerram%20et%20al.%202020.pdf
long_lat ENVELOPE(-128.996,-128.996,55.046,55.046)
geographic Lava Lake
geographic_facet Lava Lake
genre Fennoscandia
genre_facet Fennoscandia
op_relation https://orca.cardiff.ac.uk/id/eprint/133158/1/Jerram%20et%20al.%202020.pdf
Jerram, Matthew, Bonnand, Pierre, Kerr, Andrew C. https://orca.cardiff.ac.uk/view/cardiffauthors/A0488436.html orcid:0000-0001-5569-4730 orcid:0000-0001-5569-4730, Nisbet, Euan G., Puchtel, Igor S. and Halliday, Alex N. 2020. The δ53Cr isotope composition of komatiite flows and implications for the composition of the bulk silicate Earth. Chemical Geology 551 , 119761. 10.1016/j.chemgeo.2020.119761 https://doi.org/10.1016/j.chemgeo.2020.119761 file https://orca.cardiff.ac.uk/id/eprint/133158/1/Jerram%20et%20al.%202020.pdf
doi:10.1016/j.chemgeo.2020.119761
op_rights cc_by_nc_nd
op_doi https://doi.org/10.1016/j.chemgeo.2020.119761
container_title Chemical Geology
container_volume 551
container_start_page 119761
_version_ 1785582986350034944