Greenland melt drives continuous export of methane from the ice-sheet bed

Ice sheets are currently ignored in global methane budgets1,2. Although ice sheets have been proposed to contain large reserves of methane that may contribute to a rise in atmospheric methane concentration if released during periods of rapid ice retreat3,4, no data exist on the current methane footp...

Full description

Bibliographic Details
Published in:Nature
Main Authors: Lamarche-Gagnon, Guillaume, Wadham, Jemma L., Sherwood Lollar, Barbara, Arndt, Sandra, Fietzek, Peer, Beaton, Alexander D., Tedstone, Andrew J., Telling, Jon, Bagshaw, Elizabeth A., Hawkings, Jon R., Kohler, Tyler J., Zarsky, Jakub D., Mowlem, Matthew C., Anesio, Alexandre M., Stibal, Marek
Format: Article in Journal/Newspaper
Language:English
Published: Nature Research 2019
Subjects:
Online Access:https://orca.cardiff.ac.uk/id/eprint/117672/
https://doi.org/10.1038/s41586-018-0800-0
https://orca.cardiff.ac.uk/id/eprint/117672/1/LB_CH4_preprint.pdf
id ftunivcardiff:oai:https://orca.cardiff.ac.uk:117672
record_format openpolar
spelling ftunivcardiff:oai:https://orca.cardiff.ac.uk:117672 2023-12-17T10:30:58+01:00 Greenland melt drives continuous export of methane from the ice-sheet bed Lamarche-Gagnon, Guillaume Wadham, Jemma L. Sherwood Lollar, Barbara Arndt, Sandra Fietzek, Peer Beaton, Alexander D. Tedstone, Andrew J. Telling, Jon Bagshaw, Elizabeth A. Hawkings, Jon R. Kohler, Tyler J. Zarsky, Jakub D. Mowlem, Matthew C. Anesio, Alexandre M. Stibal, Marek 2019-01-03 application/pdf https://orca.cardiff.ac.uk/id/eprint/117672/ https://doi.org/10.1038/s41586-018-0800-0 https://orca.cardiff.ac.uk/id/eprint/117672/1/LB_CH4_preprint.pdf en eng Nature Research https://orca.cardiff.ac.uk/id/eprint/117672/1/LB_CH4_preprint.pdf Lamarche-Gagnon, Guillaume, Wadham, Jemma L., Sherwood Lollar, Barbara, Arndt, Sandra, Fietzek, Peer, Beaton, Alexander D., Tedstone, Andrew J., Telling, Jon, Bagshaw, Elizabeth A. https://orca.cardiff.ac.uk/view/cardiffauthors/A1991811U.html orcid:0000-0001-8392-1750 orcid:0000-0001-8392-1750, Hawkings, Jon R., Kohler, Tyler J., Zarsky, Jakub D., Mowlem, Matthew C., Anesio, Alexandre M. and Stibal, Marek 2019. Greenland melt drives continuous export of methane from the ice-sheet bed. Nature 565 , pp. 73-77. 10.1038/s41586-018-0800-0 https://doi.org/10.1038/s41586-018-0800-0 file https://orca.cardiff.ac.uk/id/eprint/117672/1/LB_CH4_preprint.pdf doi:10.1038/s41586-018-0800-0 Article PeerReviewed 2019 ftunivcardiff https://doi.org/10.1038/s41586-018-0800-0 2023-11-23T23:33:48Z Ice sheets are currently ignored in global methane budgets1,2. Although ice sheets have been proposed to contain large reserves of methane that may contribute to a rise in atmospheric methane concentration if released during periods of rapid ice retreat3,4, no data exist on the current methane footprint of ice sheets. Here we find that subglacially produced methane is rapidly driven to the ice margin by the efficient drainage system of a subglacial catchment of the Greenland ice sheet. We report the continuous export of methane-supersaturated waters (CH4(aq)) from the ice-sheet bed during the melt season. Pulses of high CH4(aq) concentration coincide with supraglacially forced subglacial flushing events, confirming a subglacial source and highlighting the influence of melt on methane export. Sustained methane fluxes over the melt season are indicative of subglacial methane reserves that exceed methane export, with an estimated 6.3 tonnes (discharge-weighted mean; range from 2.4 to 11 tonnes) of CH4(aq) transported laterally from the ice-sheet bed. Stable-isotope analyses reveal a microbial origin for methane, probably from a mixture of inorganic and ancient organic carbon buried beneath the ice. We show that subglacial hydrology is crucial for controlling methane fluxes from the ice sheet, with efficient drainage limiting the extent of methane oxidation5 to about 17 per cent of methane exported. Atmospheric evasion is the main methane sink once runoff reaches the ice margin, with estimated diffusive fluxes (4.4 to 28 millimoles of CH4 per square metre per day) rivalling that of major world rivers6. Overall, our results indicate that ice sheets overlie extensive, biologically active methanogenic wetlands and that high rates of methane export to the atmosphere can occur via efficient subglacial drainage pathways. Our findings suggest that such environments have been previously underappreciated and should be considered in Earth’s methane budget. Article in Journal/Newspaper Greenland Ice Sheet Cardiff University: ORCA (Online Research @ Cardiff) Greenland Nature 565 7737 73 77
institution Open Polar
collection Cardiff University: ORCA (Online Research @ Cardiff)
op_collection_id ftunivcardiff
language English
description Ice sheets are currently ignored in global methane budgets1,2. Although ice sheets have been proposed to contain large reserves of methane that may contribute to a rise in atmospheric methane concentration if released during periods of rapid ice retreat3,4, no data exist on the current methane footprint of ice sheets. Here we find that subglacially produced methane is rapidly driven to the ice margin by the efficient drainage system of a subglacial catchment of the Greenland ice sheet. We report the continuous export of methane-supersaturated waters (CH4(aq)) from the ice-sheet bed during the melt season. Pulses of high CH4(aq) concentration coincide with supraglacially forced subglacial flushing events, confirming a subglacial source and highlighting the influence of melt on methane export. Sustained methane fluxes over the melt season are indicative of subglacial methane reserves that exceed methane export, with an estimated 6.3 tonnes (discharge-weighted mean; range from 2.4 to 11 tonnes) of CH4(aq) transported laterally from the ice-sheet bed. Stable-isotope analyses reveal a microbial origin for methane, probably from a mixture of inorganic and ancient organic carbon buried beneath the ice. We show that subglacial hydrology is crucial for controlling methane fluxes from the ice sheet, with efficient drainage limiting the extent of methane oxidation5 to about 17 per cent of methane exported. Atmospheric evasion is the main methane sink once runoff reaches the ice margin, with estimated diffusive fluxes (4.4 to 28 millimoles of CH4 per square metre per day) rivalling that of major world rivers6. Overall, our results indicate that ice sheets overlie extensive, biologically active methanogenic wetlands and that high rates of methane export to the atmosphere can occur via efficient subglacial drainage pathways. Our findings suggest that such environments have been previously underappreciated and should be considered in Earth’s methane budget.
format Article in Journal/Newspaper
author Lamarche-Gagnon, Guillaume
Wadham, Jemma L.
Sherwood Lollar, Barbara
Arndt, Sandra
Fietzek, Peer
Beaton, Alexander D.
Tedstone, Andrew J.
Telling, Jon
Bagshaw, Elizabeth A.
Hawkings, Jon R.
Kohler, Tyler J.
Zarsky, Jakub D.
Mowlem, Matthew C.
Anesio, Alexandre M.
Stibal, Marek
spellingShingle Lamarche-Gagnon, Guillaume
Wadham, Jemma L.
Sherwood Lollar, Barbara
Arndt, Sandra
Fietzek, Peer
Beaton, Alexander D.
Tedstone, Andrew J.
Telling, Jon
Bagshaw, Elizabeth A.
Hawkings, Jon R.
Kohler, Tyler J.
Zarsky, Jakub D.
Mowlem, Matthew C.
Anesio, Alexandre M.
Stibal, Marek
Greenland melt drives continuous export of methane from the ice-sheet bed
author_facet Lamarche-Gagnon, Guillaume
Wadham, Jemma L.
Sherwood Lollar, Barbara
Arndt, Sandra
Fietzek, Peer
Beaton, Alexander D.
Tedstone, Andrew J.
Telling, Jon
Bagshaw, Elizabeth A.
Hawkings, Jon R.
Kohler, Tyler J.
Zarsky, Jakub D.
Mowlem, Matthew C.
Anesio, Alexandre M.
Stibal, Marek
author_sort Lamarche-Gagnon, Guillaume
title Greenland melt drives continuous export of methane from the ice-sheet bed
title_short Greenland melt drives continuous export of methane from the ice-sheet bed
title_full Greenland melt drives continuous export of methane from the ice-sheet bed
title_fullStr Greenland melt drives continuous export of methane from the ice-sheet bed
title_full_unstemmed Greenland melt drives continuous export of methane from the ice-sheet bed
title_sort greenland melt drives continuous export of methane from the ice-sheet bed
publisher Nature Research
publishDate 2019
url https://orca.cardiff.ac.uk/id/eprint/117672/
https://doi.org/10.1038/s41586-018-0800-0
https://orca.cardiff.ac.uk/id/eprint/117672/1/LB_CH4_preprint.pdf
geographic Greenland
geographic_facet Greenland
genre Greenland
Ice Sheet
genre_facet Greenland
Ice Sheet
op_relation https://orca.cardiff.ac.uk/id/eprint/117672/1/LB_CH4_preprint.pdf
Lamarche-Gagnon, Guillaume, Wadham, Jemma L., Sherwood Lollar, Barbara, Arndt, Sandra, Fietzek, Peer, Beaton, Alexander D., Tedstone, Andrew J., Telling, Jon, Bagshaw, Elizabeth A. https://orca.cardiff.ac.uk/view/cardiffauthors/A1991811U.html orcid:0000-0001-8392-1750 orcid:0000-0001-8392-1750, Hawkings, Jon R., Kohler, Tyler J., Zarsky, Jakub D., Mowlem, Matthew C., Anesio, Alexandre M. and Stibal, Marek 2019. Greenland melt drives continuous export of methane from the ice-sheet bed. Nature 565 , pp. 73-77. 10.1038/s41586-018-0800-0 https://doi.org/10.1038/s41586-018-0800-0 file https://orca.cardiff.ac.uk/id/eprint/117672/1/LB_CH4_preprint.pdf
doi:10.1038/s41586-018-0800-0
op_doi https://doi.org/10.1038/s41586-018-0800-0
container_title Nature
container_volume 565
container_issue 7737
container_start_page 73
op_container_end_page 77
_version_ 1785584088634097664