Characterising the response of the mixed and the transitional layers to the passage of storms in the Sub-Antarctic Zone

Mid-latitude storms are common in the Southern Ocean (SO) and have been shown to drive substantial vertical mixing, leaving behind wakes of perturbed upper ocean. The vertical extent and duration of the impact of these storms on the upper ocean remains unknown in this region, partly due to lack of o...

Full description

Bibliographic Details
Main Author: Mpalweni, Ayanda
Other Authors: Vichi, Marcello, Nicholson, Sarah
Format: Master Thesis
Language:English
Published: Faculty of Science 2019
Subjects:
Online Access:https://hdl.handle.net/11427/31796
https://open.uct.ac.za/bitstream/11427/31796/1/thesis_sci_2019_mpalweni_ayanda.pdf
id ftunivcapetownir:oai:localhost:11427/31796
record_format openpolar
spelling ftunivcapetownir:oai:localhost:11427/31796 2023-05-15T13:54:58+02:00 Characterising the response of the mixed and the transitional layers to the passage of storms in the Sub-Antarctic Zone Mpalweni, Ayanda Vichi, Marcello Nicholson, Sarah 2019 application/pdf https://hdl.handle.net/11427/31796 https://open.uct.ac.za/bitstream/11427/31796/1/thesis_sci_2019_mpalweni_ayanda.pdf eng eng Faculty of Science Department of Oceanography https://hdl.handle.net/11427/31796 https://open.uct.ac.za/bitstream/11427/31796/1/thesis_sci_2019_mpalweni_ayanda.pdf Oceanography Master Thesis Masters MSc 2019 ftunivcapetownir 2022-09-13T05:48:13Z Mid-latitude storms are common in the Southern Ocean (SO) and have been shown to drive substantial vertical mixing, leaving behind wakes of perturbed upper ocean. The vertical extent and duration of the impact of these storms on the upper ocean remains unknown in this region, partly due to lack of observations in this remote part of the world. The mixed-layer depth (MLD) is used widely as proxy for vertical extent of upper-ocean mixing, with the assumption that it integrates the variability of atmospheric forcing. Recent studies have shown that this shear-driven mixing associated with storms can actually extend below the base of the MLD into the transitional layer (TL). Knowledge about the TL would help improve the mixing models of the upper ocean because it acts as a window/mediator between the deep ocean and the surface mixed layer (ML). However, the responses of the MLD and the transitional layer depth (TLD) have been shown to vary substantially between different storm events at similar locations. In this study, these two diagnostics, the MLD and TLD, have been used to investigate the response of the upper ocean mixing to storms in the Sub-Antarctic Zone (SAZ) and to further interrogate the relevance of the MLD as a proxy for mixing extent at these short temporal scales. This is explored during the summer period when the storm-driven mixing is thought to maintain primary production via enhanced nutrient supply. I used data collected from high-resolution autonomous gliders in pseudo-mooring mode, which remotely sampled the SAZ from spring to summer documenting the passage of storm events. Four storms of different magnitude were analysed in summer, and two different modes of the upper ocean response were identified. In the first mode, the MLD deepened during a storm, with little or no changes in the vertical structure of temperature and salinity in the layer below. The second mode was characterized by changes in the TL properties, which deepened at times; the MLD however did not respond to this storm forcing. ... Master Thesis Antarc* Antarctic Southern Ocean University of Cape Town: OpenUCT Antarctic Southern Ocean
institution Open Polar
collection University of Cape Town: OpenUCT
op_collection_id ftunivcapetownir
language English
topic Oceanography
spellingShingle Oceanography
Mpalweni, Ayanda
Characterising the response of the mixed and the transitional layers to the passage of storms in the Sub-Antarctic Zone
topic_facet Oceanography
description Mid-latitude storms are common in the Southern Ocean (SO) and have been shown to drive substantial vertical mixing, leaving behind wakes of perturbed upper ocean. The vertical extent and duration of the impact of these storms on the upper ocean remains unknown in this region, partly due to lack of observations in this remote part of the world. The mixed-layer depth (MLD) is used widely as proxy for vertical extent of upper-ocean mixing, with the assumption that it integrates the variability of atmospheric forcing. Recent studies have shown that this shear-driven mixing associated with storms can actually extend below the base of the MLD into the transitional layer (TL). Knowledge about the TL would help improve the mixing models of the upper ocean because it acts as a window/mediator between the deep ocean and the surface mixed layer (ML). However, the responses of the MLD and the transitional layer depth (TLD) have been shown to vary substantially between different storm events at similar locations. In this study, these two diagnostics, the MLD and TLD, have been used to investigate the response of the upper ocean mixing to storms in the Sub-Antarctic Zone (SAZ) and to further interrogate the relevance of the MLD as a proxy for mixing extent at these short temporal scales. This is explored during the summer period when the storm-driven mixing is thought to maintain primary production via enhanced nutrient supply. I used data collected from high-resolution autonomous gliders in pseudo-mooring mode, which remotely sampled the SAZ from spring to summer documenting the passage of storm events. Four storms of different magnitude were analysed in summer, and two different modes of the upper ocean response were identified. In the first mode, the MLD deepened during a storm, with little or no changes in the vertical structure of temperature and salinity in the layer below. The second mode was characterized by changes in the TL properties, which deepened at times; the MLD however did not respond to this storm forcing. ...
author2 Vichi, Marcello
Nicholson, Sarah
format Master Thesis
author Mpalweni, Ayanda
author_facet Mpalweni, Ayanda
author_sort Mpalweni, Ayanda
title Characterising the response of the mixed and the transitional layers to the passage of storms in the Sub-Antarctic Zone
title_short Characterising the response of the mixed and the transitional layers to the passage of storms in the Sub-Antarctic Zone
title_full Characterising the response of the mixed and the transitional layers to the passage of storms in the Sub-Antarctic Zone
title_fullStr Characterising the response of the mixed and the transitional layers to the passage of storms in the Sub-Antarctic Zone
title_full_unstemmed Characterising the response of the mixed and the transitional layers to the passage of storms in the Sub-Antarctic Zone
title_sort characterising the response of the mixed and the transitional layers to the passage of storms in the sub-antarctic zone
publisher Faculty of Science
publishDate 2019
url https://hdl.handle.net/11427/31796
https://open.uct.ac.za/bitstream/11427/31796/1/thesis_sci_2019_mpalweni_ayanda.pdf
geographic Antarctic
Southern Ocean
geographic_facet Antarctic
Southern Ocean
genre Antarc*
Antarctic
Southern Ocean
genre_facet Antarc*
Antarctic
Southern Ocean
op_relation https://hdl.handle.net/11427/31796
https://open.uct.ac.za/bitstream/11427/31796/1/thesis_sci_2019_mpalweni_ayanda.pdf
_version_ 1766261169493901312