Measuring and modelling of volcanic pollutants from White Island and Ruapehu volcanoes: assessment of related hazard in the North Island

White Island and Ruapehu are currently the most active volcanoes in New Zealand. During non-eruptive periods, intense quiescent degassing through fumaroles can occur. The current project studies the quiescent degassing plumes, including aerosol sampling on White Island and dispersion modelling of SO...

Full description

Bibliographic Details
Main Author: Grunewald, Uwe
Format: Other/Unknown Material
Language:English
Published: University of Canterbury. Geological Sciences 2007
Subjects:
Nes
Online Access:http://hdl.handle.net/10092/1428
https://doi.org/10.26021/7660
id ftunivcanter:oai:ir.canterbury.ac.nz:10092/1428
record_format openpolar
spelling ftunivcanter:oai:ir.canterbury.ac.nz:10092/1428 2023-05-15T18:43:32+02:00 Measuring and modelling of volcanic pollutants from White Island and Ruapehu volcanoes: assessment of related hazard in the North Island Grunewald, Uwe 2007 application/pdf http://hdl.handle.net/10092/1428 https://doi.org/10.26021/7660 en eng University of Canterbury. Geological Sciences NZCU http://hdl.handle.net/10092/1428 http://dx.doi.org/10.26021/7660 Copyright Uwe Grunewald https://canterbury.libguides.com/rights/theses Pollution modelling TAPM White Island Ruapehu hazard assessment Theses / Dissertations 2007 ftunivcanter https://doi.org/10.26021/7660 2022-09-08T13:36:36Z White Island and Ruapehu are currently the most active volcanoes in New Zealand. During non-eruptive periods, intense quiescent degassing through fumaroles can occur. The current project studies the quiescent degassing plumes, including aerosol sampling on White Island and dispersion modelling of SO₂ and PM₁₀ from White Island and Ruapehu volcanoes. Aerosol sampling from fumaroles at the crater floor on White Island volcano was carried out on 9 February and 6 April 2005. The exposed filters were analysed for various anions and cations and the particle mass concentration and molar concentration determined. Major elemental constituents were sodium and chlorine (Na⁺: 413 µg m⁻³, Cl⁻: 1520 µg m⁻³), which show best correlation at both sampling sessions. Other ions detected, with little correlation, are Ca²⁺, PO₄³⁻ and to a certain extent Mg²⁺. Other constituents found, which cannot correlate explicitly to other ions, are K⁺, NH₄⁺, NO₃⁻, and SO₄²⁻. SEM study of one exposed filter was performed and mainly NaCl particles could be distinguished due to their well-defined cubic shape. The Air Pollution Model (TAPM) was used for dispersion modelling of SO₂ (models 1-4) and PM₁₀ (models 5 and 6) from White Island and Ruapehu volcanoes. Annual modelling was performed using different parameters of emission rate, exit temperature and exit velocity. The resulting plume dispersions show relatively low concentrations at ground level ≤10 m), particularly for the models of PM₁₀ dispersion. TAPM calculated the highest SO₂ ground level concentrations with model 4, where the NES values of 350 and 570 µg m⁻³ were exceeded several times. The data was then used for detailed hazard assessment of urban population in the North Island. The meteorological data from annual modelling was used for model evaluation and compared with observation data from different weather stations by statistical calculations. Overall, TAPM performed well with most good and very good results. To evaluate SO₂ dispersion modelling, airborne plume measurements were ... Other/Unknown Material White Island University of Canterbury, Christchurch: UC Research Repository Nes ENVELOPE(7.634,7.634,62.795,62.795) Nes’ ENVELOPE(44.681,44.681,66.600,66.600) New Zealand White Island ENVELOPE(48.583,48.583,-66.733,-66.733)
institution Open Polar
collection University of Canterbury, Christchurch: UC Research Repository
op_collection_id ftunivcanter
language English
topic Pollution modelling
TAPM
White Island
Ruapehu
hazard assessment
spellingShingle Pollution modelling
TAPM
White Island
Ruapehu
hazard assessment
Grunewald, Uwe
Measuring and modelling of volcanic pollutants from White Island and Ruapehu volcanoes: assessment of related hazard in the North Island
topic_facet Pollution modelling
TAPM
White Island
Ruapehu
hazard assessment
description White Island and Ruapehu are currently the most active volcanoes in New Zealand. During non-eruptive periods, intense quiescent degassing through fumaroles can occur. The current project studies the quiescent degassing plumes, including aerosol sampling on White Island and dispersion modelling of SO₂ and PM₁₀ from White Island and Ruapehu volcanoes. Aerosol sampling from fumaroles at the crater floor on White Island volcano was carried out on 9 February and 6 April 2005. The exposed filters were analysed for various anions and cations and the particle mass concentration and molar concentration determined. Major elemental constituents were sodium and chlorine (Na⁺: 413 µg m⁻³, Cl⁻: 1520 µg m⁻³), which show best correlation at both sampling sessions. Other ions detected, with little correlation, are Ca²⁺, PO₄³⁻ and to a certain extent Mg²⁺. Other constituents found, which cannot correlate explicitly to other ions, are K⁺, NH₄⁺, NO₃⁻, and SO₄²⁻. SEM study of one exposed filter was performed and mainly NaCl particles could be distinguished due to their well-defined cubic shape. The Air Pollution Model (TAPM) was used for dispersion modelling of SO₂ (models 1-4) and PM₁₀ (models 5 and 6) from White Island and Ruapehu volcanoes. Annual modelling was performed using different parameters of emission rate, exit temperature and exit velocity. The resulting plume dispersions show relatively low concentrations at ground level ≤10 m), particularly for the models of PM₁₀ dispersion. TAPM calculated the highest SO₂ ground level concentrations with model 4, where the NES values of 350 and 570 µg m⁻³ were exceeded several times. The data was then used for detailed hazard assessment of urban population in the North Island. The meteorological data from annual modelling was used for model evaluation and compared with observation data from different weather stations by statistical calculations. Overall, TAPM performed well with most good and very good results. To evaluate SO₂ dispersion modelling, airborne plume measurements were ...
format Other/Unknown Material
author Grunewald, Uwe
author_facet Grunewald, Uwe
author_sort Grunewald, Uwe
title Measuring and modelling of volcanic pollutants from White Island and Ruapehu volcanoes: assessment of related hazard in the North Island
title_short Measuring and modelling of volcanic pollutants from White Island and Ruapehu volcanoes: assessment of related hazard in the North Island
title_full Measuring and modelling of volcanic pollutants from White Island and Ruapehu volcanoes: assessment of related hazard in the North Island
title_fullStr Measuring and modelling of volcanic pollutants from White Island and Ruapehu volcanoes: assessment of related hazard in the North Island
title_full_unstemmed Measuring and modelling of volcanic pollutants from White Island and Ruapehu volcanoes: assessment of related hazard in the North Island
title_sort measuring and modelling of volcanic pollutants from white island and ruapehu volcanoes: assessment of related hazard in the north island
publisher University of Canterbury. Geological Sciences
publishDate 2007
url http://hdl.handle.net/10092/1428
https://doi.org/10.26021/7660
long_lat ENVELOPE(7.634,7.634,62.795,62.795)
ENVELOPE(44.681,44.681,66.600,66.600)
ENVELOPE(48.583,48.583,-66.733,-66.733)
geographic Nes
Nes’
New Zealand
White Island
geographic_facet Nes
Nes’
New Zealand
White Island
genre White Island
genre_facet White Island
op_relation NZCU
http://hdl.handle.net/10092/1428
http://dx.doi.org/10.26021/7660
op_rights Copyright Uwe Grunewald
https://canterbury.libguides.com/rights/theses
op_doi https://doi.org/10.26021/7660
_version_ 1766233954819506176