Effects of Seasonal Ice Coverage on the Physical Oceanographic Conditions of the Kitikmeot Sea in the Canadian Arctic Archipelago

The Kitikmeot Sea is a semi-enclosed, east–west waterway in the southern Canadian Arctic Archipelago (CAA). In the present work, the ice conditions, stratification, and circulation of the Kitikmeot Sea are diagnosed using numerical simulations with a 1/12° resolution. The physical oceanographic cond...

Full description

Bibliographic Details
Published in:Atmosphere-Ocean
Main Authors: Xu, Chengzhu, Mikhael, Wahad, Myers, Paul G., Else, Brent, Sims, Richard P., Zhou, Qi
Format: Article in Journal/Newspaper
Language:English
Published: Taylor and Francis 2021
Subjects:
Online Access:http://hdl.handle.net/1880/113796
https://doi.org/10.1080/07055900.2021.1965531
Description
Summary:The Kitikmeot Sea is a semi-enclosed, east–west waterway in the southern Canadian Arctic Archipelago (CAA). In the present work, the ice conditions, stratification, and circulation of the Kitikmeot Sea are diagnosed using numerical simulations with a 1/12° resolution. The physical oceanographic conditions of the Kitikmeot Sea are different from channels in the northern CAA due to the existence of a substantial ice-free period each year. The consequences of such ice conditions are twofold. First, through fluctuations of external forcings, such as solar radiation and wind stress, acting directly or indirectly on the sea surface, the seasonal ice coverage leads to significant seasonal variations in both stratification and circulation. Our simulation results suggest that such variations include freshening and deepening of the surface layer, in which salinity can reach as low as 15 during the peak runoff season, and significantly stronger along-shore currents driven directly by the wind stress during the ice-free season. The second consequence is that the sea ice is not landfast but can move freely during the melting season. By analyzing the relative importance of thermodynamic (freezing and/or melting) and dynamic (ice movement) processes to the ice dynamics, our simulation results suggest that there is a net inflow of sea ice into the Kitikmeot Sea, which melts locally each summer. The movement of sea ice thus provides a significant freshwater pathway, which contributes approximately 14 km3 yr−1 of fresh water to the Kitikmeot Sea, on average, equivalent to a third of freshwater input from runoff from the land.