Historia evolutiva de las señales acústicas en ballenas barbadas (Cetartiodactyla: Mysticeti)

Ilustraciones spa:Las relaciones filogenéticas en cetáceos han sido ampliamente analizadas empleando múltiples enfoques, desde el uso de datos morfológicos y secuencias de ADNmt o ADN nuclear hasta el uso del genoma. Además, la recuperación de fósiles y datos secundarios ha permitido comprender la h...

Full description

Bibliographic Details
Main Author: Marín Zúñiga, Daniela
Other Authors: Rodríguez-Rey, Ghennie T
Format: Bachelor Thesis
Language:English
Spanish
Published: Facultad de Ciencias Exactas y Naturales 2022
Subjects:
Online Access:https://repositorio.ucaldas.edu.co/handle/ucaldas/18157
https://repositorio.ucaldas.edu.co/
id ftunivcaldas:oai:repositorio.ucaldas.edu.co:ucaldas/18157
record_format openpolar
institution Open Polar
collection Universidad de Caldas Repositorio Institucional
op_collection_id ftunivcaldas
language English
Spanish
topic Macroevolución
Método comparativo
Variación de rasgos
Movimiento browniano
Cetáceos
Macroevolution
Comparative method
Trait variation
Brownian motion
Cetaceans
Animal
Mamífero
spellingShingle Macroevolución
Método comparativo
Variación de rasgos
Movimiento browniano
Cetáceos
Macroevolution
Comparative method
Trait variation
Brownian motion
Cetaceans
Animal
Mamífero
Marín Zúñiga, Daniela
Historia evolutiva de las señales acústicas en ballenas barbadas (Cetartiodactyla: Mysticeti)
topic_facet Macroevolución
Método comparativo
Variación de rasgos
Movimiento browniano
Cetáceos
Macroevolution
Comparative method
Trait variation
Brownian motion
Cetaceans
Animal
Mamífero
description Ilustraciones spa:Las relaciones filogenéticas en cetáceos han sido ampliamente analizadas empleando múltiples enfoques, desde el uso de datos morfológicos y secuencias de ADNmt o ADN nuclear hasta el uso del genoma. Además, la recuperación de fósiles y datos secundarios ha permitido comprender la historia evolutiva y los tiempos de divergencia de estos gigantes del mar. Combinados, estos estudios mejoran la comprensión del origen de los cetáceos; su adaptación y procesos de especiación. Aunque las señales acústicas son de gran importancia en cetáceos, pocos estudios evolutivos se han hecho sobre el origen y la variación de sus rasgos acústicos. En el presente estudio comparativo, analizamos los sonidos sociales de catorce especies de misticetos y evaluamos cuantitativamente su variabilidad acústica incorporando de forma integrada datos moleculares y acústicos. Primero discutimos los resultados del análisis filogenético y las implicaciones de los tiempos de divergencia inferidos en nuestra comprensión de la evolución de Cetacea y luego, empleamos un método comparativo basado en movimiento browniano para dilucidar la historia evolutiva de los sonidos sociales en Mysticeti, a partir del cual se evidenció que los sonidos sociales son específicos para cada especie de misticetos y cada taxón posee un conjunto único de variables acústicas. eng:Phylogenetic relationships in cetaceans have been extensively analyzed using multiple approaches, from the use of morphological data and mtDNA or nuclear DNA sequences to the use of the genome. In addition, the recovery of fossils and secondary data has made it possible to understand the evolutionary history and divergence times of these giants of the sea. Combined, these studies improve understanding of the origin of cetaceans; their adaptation and speciation processes. Although acoustic signals are of great importance in cetaceans, few evolutionary studies have been done on the origin and variation of their acoustic features. In this comparative study, we analyze the ...
author2 Rodríguez-Rey, Ghennie T
format Bachelor Thesis
author Marín Zúñiga, Daniela
author_facet Marín Zúñiga, Daniela
author_sort Marín Zúñiga, Daniela
title Historia evolutiva de las señales acústicas en ballenas barbadas (Cetartiodactyla: Mysticeti)
title_short Historia evolutiva de las señales acústicas en ballenas barbadas (Cetartiodactyla: Mysticeti)
title_full Historia evolutiva de las señales acústicas en ballenas barbadas (Cetartiodactyla: Mysticeti)
title_fullStr Historia evolutiva de las señales acústicas en ballenas barbadas (Cetartiodactyla: Mysticeti)
title_full_unstemmed Historia evolutiva de las señales acústicas en ballenas barbadas (Cetartiodactyla: Mysticeti)
title_sort historia evolutiva de las señales acústicas en ballenas barbadas (cetartiodactyla: mysticeti)
publisher Facultad de Ciencias Exactas y Naturales
publishDate 2022
url https://repositorio.ucaldas.edu.co/handle/ucaldas/18157
https://repositorio.ucaldas.edu.co/
genre Arctic
genre_facet Arctic
op_relation Adam, O., Cazau, D., Gandilhon, N., Fabre, B., Laitman, J. T., & Reidenberg, J. S. (2013). New acoustic model for humpback whale sound production. Applied Acoustics, 74(10). https://doi.org/10.1016/j.apacoust.2013.04.007
Aide, T. M., Corrada-Bravo, C., Campos-Cerqueira, M., Milan, C., Vega, G., & Alvarez, R. (2013). Real-time bioacoustics monitoring and automated species identification. PeerJ, 2013(1). https://doi.org/10.7717/peerj.103
Árnason, Ú., Lammers, F., Kumar, V., Nilsson, M. A., & Janke, A. (2018). Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow. Science Advances, 4(4). https://doi.org/10.1126/sciadv.aap9873
Au, W., & Lammers, M. (2014). Cetacean Acoustics. Biological and Medical Acoustics, 805–837.
Ballance, L. T. (2018). Cetacean Ecology. Encyclopedia of Marine Mammals, 1991, 172–180. https://doi.org/10.1016/b978-0-12-804327-1.00087-x
Bell, M. A. (2015). Package ‘ geoscale .’
Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57(4), 717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x
Brown, A., Garg, S., & Montgomery, J. (2020). AcoustiCloud: A cloud-based system for managing large-scale bioacoustics processing. Environmental Modelling and Software, 131(June), 104778. https://doi.org/10.1016/j.envsoft.2020.104778
Burnham, R. E., & Duffus, D. A. (2020). The use of passive acoustic monitoring as a census tool of gray whale (Eschrichtius robustus) migration. Ocean and Coastal Management, 188(December 2019), 105070. https://doi.org/10.1016/j.ocecoaman.2019.105070
Burnham, R. E., Duffus, D. A., & Malcolm, C. D. (2021). Towards an enhanced management of recreational whale watching : The use of ecological and behavioural data to support evidence-based management actions. Biological Conservation, 255(February), 109009. https://doi.org/10.1016/j.biocon.2021.109009
Cabrera, A. A., Bérubé, M., Lopes, X. M., Louis, M., Oosting, T., Rey-Iglesia, A., Rivera-León, V. E., Székely, D., Lorenzen, E. D., & Palsbøll, P. J. (2021). A Genetic Perspective on Cetacean Evolution. Annual Review of Ecology, Evolution, and Systematics, 52(November), 131–151. https://doi.org/10.1146/annurev-ecolsys-012021-105003
Chen, Z., & Wiens, J. J. (2020). The origins of acoustic communication in vertebrates. Nature Communications, 11(1), 1–8. https://doi.org/10.1038/s41467-020-14356-3
Churchill, M., Martinez-Caceres, M., de Muizon, C., Mnieckowski, J., & Geisler, J. H. (2016). The Origin of High-Frequency Hearing in Whales. Current Biology, 26(16), 2144–2149. https://doi.org/10.1016/j.cub.2016.06.004
Clark, C. W. (1990). Acoustic Behavior of Mysticete Whales. Sensory Abilities of Cetaceans, 571– 583. https://doi.org/10.1007/978-1-4899-0858-2_40
Cornwell, W., & Nakagawa, S. (2017). Phylogenetic comparative methods. Current Biology, 27(9), R333–R336. https://doi.org/10.1016/j.cub.2017.03.049
Cunha, H. A., Moraes, L. C., Medeiros, B. V., Lailson-Brito, J., da Silva, V. M. F., Solé-Cava, A. M., & Schrago, C. G. (2011). Phylogenetic status and timescale for the diversification of Steno and Sotalia dolphins. PLoS ONE, 6(12), 1–7. https://doi.org/10.1371/journal.pone.0028297
de Mello Bezerra, A., Potsch de Carvalho-e-Silva, S., & Pedreira Gonzaga, L. (2021). Evolution of acoustic signals in Neotropical leaf frogs. Animal Behaviour, 181, 41–49. https://doi.org/10.1016/j.anbehav.2021.08.014
Deméré, T. A., McGowen, M. R., Berta, A., & Gatesy, J. (2008). Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Systematic Biology, 57(1), 15–37. https://doi.org/10.1080/10635150701884632
Dréo, R., Bouffaut, L., Leroy, E., Barruol, G., & Samaran, F. (2019). Baleen whale distribution and seasonal occurrence revealed by an ocean bottom seismometer network in the Western Indian Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 161(April 2018), 132–144. https://doi.org/10.1016/j.dsr2.2018.04.005
Espregueira Themudo, G., Alves, L. Q., Machado, A. M., Lopes-Marques, M., da Fonseca, R. R., Fonseca, M., Ruivo, R., & Castro, L. F. C. (2020). Losing Genes: The Evolutionary Remodeling of Cetacea Skin. Frontiers in Marine Science, 7(October). https://doi.org/10.3389/fmars.2020.592375
Fordyce, R. E. (2018). Cetacean Evolution. Encyclopedia of Marine Mammals, 1851, 180–185. https://doi.org/10.1016/b978-0-12-804327-1.00088-1
Garamszegi, L. Z. (2014). Modern phylogenetic comparative methods and their application in evolutionary biology. In Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology. https://doi.org/10.1007/978-3-662-43550-2
Gatesy, J., & McGowen, M. R. (2021). Higher level phylogeny of baleen whales. In The Bowhead Whale. INC. https://doi.org/10.1016/b978-0-12-818969-6.00001-7
Hasegawa, M., Kishino, H., & Yano, T. aki. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160–174. https://doi.org/10.1007/BF02101694
Husson, A. F., Josse, J., Le, S., Mazet, J., & Husson, M. F. (2022). Package ‘ FactoMineR .’
Isler, M. L., Isler, P. R., & Whitney, B. M. (1998). Use of vocalizations to establish species limits in antbirds (Passeriformes: Thamnophilidae). Auk, 115(3), 577–590. https://doi.org/10.2307/4089407
Ivkovich, T., Filatova, O. A., Burdin, A. M., Sato, H., & Hoyt, E. (2010). The social organization of resident-type killer whales (Orcinus orca) in Avacha Gulf, Northwest Pacific, as revealed through association patterns and acoustic similarity. Mammalian Biology, 75(3), 198–210. https://doi.org/10.1016/j.mambio.2009.03.006
Jiang, J., Wang, X., Duan, F., Liu, W., Bu, L., Li, F., Li, C., Sun, Z., Ma, S., & Deng, C. (2019). Study of the relationship between pilot whale (Globicephala melas) behaviour and the ambiguity function of its sounds. Applied Acoustics, 146, 31–37. https://doi.org/10.1016/j.apacoust.2018.10.032
Kamilar, J. M., & Cooper, N. (2013). Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1618). https://doi.org/10.1098/rstb.2012.0341
Matthews, J. N., Gordon, J. C. D., Macdonald, D. W., & Rendell, L. E. (1999). A review of frequency and time parameters of cetacean tonal calls. Bioacoustics, 10(1), 47–71. https://doi.org/10.1080/09524622.1999.9753418
May-collado, L. J., Agnarsson, I., & Wartzok, D. (2007). A phylogenetic review of tonal sound production in whales. August. https://doi.org/10.1186/1471-2148-7-136
McGowen, M. R. (2011). Toward the resolution of an explosive radiation-A multilocus phylogeny of oceanic dolphins (Delphinidae). Molecular Phylogenetics and Evolution, 60(3), 345–357. https://doi.org/10.1016/j.ympev.2011.05.003
McGowen, M. R., Tsagkogeorga, G., Álvarez-Carretero, S., Dos Reis, M., Struebig, M., Deaville, R., Jepson, P. D., Jarman, S., Polanowski, A., Morin, P. A., & Rossiter, S. J. (2020). Phylogenomic Resolution of the Cetacean Tree of Life Using Target Sequence Capture. Systematic Biology, 69(3), 479–501. https://doi.org/10.1093/sysbio/syz068
Mellinger, D. K., & Clark, C. W. (2006). MobySound: A reference archive for studying automatic recognition of marine mammal sounds. Applied Acoustics, 67(11–12), 1226–1242. https://doi.org/10.1016/j.apacoust.2006.06.002
Moore, S. E., Haug, T., Víkingsson, G. A., & Stenson, G. B. (2019). Progress in Oceanography Baleen whale ecology in arctic and subarctic seas in an era of rapid habitat alteration. Progress in Oceanography, 176(September 2018), 102118. https://doi.org/10.1016/j.pocean.2019.05.010
Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., & Thuiller, W. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3(4), 743– 756. https://doi.org/10.1111/j.2041-210X.2012.00196.x
Oswald, J. N., Barlow, J., & Norris, T. (2000). Acoustic identification of nine delphinid species in the eastern tropical Pacific Ocean. The Journal of the Acoustical Society of America, 108(5), 2635– 2635. https://doi.org/10.1121/1.4743807
Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877– 884. https://doi.org/10.1038/44766
Palevitz, B. A. (2000). Evolutionary genomics. In Scientist (Vol. 14, Issue 16).
Pavan, G., Favaretto, A., Scaravelli, D., & Macchio, S. (2015). Bioacoustics and ecoacoustics applied to environmental monitoring and management. September.
Penar, W., Magiera, A., & Klocek, C. (2020). Applications of bioacoustics in animal ecology. In Ecological Complexity (Vol. 43). https://doi.org/10.1016/j.ecocom.2020.100847
Prieto, R., Tobeña, M., & Silva, M. A. (2017). Deep – Sea Research II Habitat preferences of baleen whales in a mid-latitude habitat. Deep-Sea Research Part II, 141(August 2016), 155–167. https://doi.org/10.1016/j.dsr2.2016.07.015
Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2017). Software for Systematics and Evolution Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol, 00(0), 1–3. https://doi.org/10.1093/sysbio/syy032/4989127
Reidenberg, J. S., & Laitman, J. T. (2007). Discovery of a low frequency sound source in mysticeti (baleen whales): Anatomical establishment of a vocal fold homolog. Anatomical Record, 290(6), 745–759. https://doi.org/10.1002/ar.20544
Revell, M. L. J. (2022). Phylogenetic Tools for Comparative Biology (and Other Things). 1.
Roman, J., Estes, J. A., Morissette, L., Smith, C., Costa, D., McCarthy, J., Nation, J. B., Nicol, S., Pershing, A., & Smetacek, V. (2014). Whales as marine ecosystem engineers. Frontiers in Ecology and the Environment, 12(7), 377–385. https://doi.org/10.1890/130220
Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029
Sasaki, T. A. S., Ikaido, M. A. N., Amilton, H. E. H., Oto, M. U. G., Ato, H. I. K., Anda, N. A. K., Astene, L. U. I. S. A. P., Ao, Y. I. N. G. C., Ordyce, R. E. W. A. N. F., Asegawa, M. A. H., & Kada, N. O. O. (2005). Mitochondrial Phylogenetics and Evolution of Mysticete Whales. 54(1), 77–90. https://doi.org/10.1080/10635150590905939
Schaffeld, T., Bräger, S., Gallus, A., Dähne, M., Krügel, K., Herrmann, A., Jabbusch, M., Ruf, T., Verfuß, U. K., Benke, H., & Koblitz, J. C. (2016). Diel and seasonal patterns in acoustic presence and foraging behaviour of free-ranging harbour porpoises. Marine Ecology Progress Series, 547(Au 1993), 257–272. https://doi.org/10.3354/meps11627
Sousa, A., Alves, F., Dinis, A., Bentz, J., Cruz, M. J., & Nunes, J. P. (2019). How vulnerable are cetaceans to climate change? Developing and testing a new index. Ecological Indicators, 98(October 2018), 9–18. https://doi.org/10.1016/j.ecolind.2018.10.046
op_rights info:eu-repo/semantics/closedAccess
http://purl.org/coar/access_right/c_f1cf
op_doi https://doi.org/10.1016/b978-0-12-804327-1.00087-x10.1007/978-1-4899-0858-2_4010.1016/b978-0-12-804327-1.00088-110.1007/978-3-662-43550-210.1016/j.ympev.2011.05.00310.1038/4476610.1016/j.ecoinf.2021.10122310.1093/molbev/msm088
container_start_page 172
op_container_end_page 180
_version_ 1810294163348914176
spelling ftunivcaldas:oai:repositorio.ucaldas.edu.co:ucaldas/18157 2024-09-15T17:52:06+00:00 Historia evolutiva de las señales acústicas en ballenas barbadas (Cetartiodactyla: Mysticeti) Marín Zúñiga, Daniela Rodríguez-Rey, Ghennie T 2022-10-27T19:46:35Z application/pdf https://repositorio.ucaldas.edu.co/handle/ucaldas/18157 https://repositorio.ucaldas.edu.co/ eng spa eng spa Facultad de Ciencias Exactas y Naturales Manizales Biología Adam, O., Cazau, D., Gandilhon, N., Fabre, B., Laitman, J. T., & Reidenberg, J. S. (2013). New acoustic model for humpback whale sound production. Applied Acoustics, 74(10). https://doi.org/10.1016/j.apacoust.2013.04.007 Aide, T. M., Corrada-Bravo, C., Campos-Cerqueira, M., Milan, C., Vega, G., & Alvarez, R. (2013). Real-time bioacoustics monitoring and automated species identification. PeerJ, 2013(1). https://doi.org/10.7717/peerj.103 Árnason, Ú., Lammers, F., Kumar, V., Nilsson, M. A., & Janke, A. (2018). Whole-genome sequencing of the blue whale and other rorquals finds signatures for introgressive gene flow. Science Advances, 4(4). https://doi.org/10.1126/sciadv.aap9873 Au, W., & Lammers, M. (2014). Cetacean Acoustics. Biological and Medical Acoustics, 805–837. Ballance, L. T. (2018). Cetacean Ecology. Encyclopedia of Marine Mammals, 1991, 172–180. https://doi.org/10.1016/b978-0-12-804327-1.00087-x Bell, M. A. (2015). Package ‘ geoscale .’ Blomberg, S. P., Garland, T., & Ives, A. R. (2003). Testing for phylogenetic signal in comparative data: Behavioral traits are more labile. Evolution, 57(4), 717–745. https://doi.org/10.1111/j.0014-3820.2003.tb00285.x Brown, A., Garg, S., & Montgomery, J. (2020). AcoustiCloud: A cloud-based system for managing large-scale bioacoustics processing. Environmental Modelling and Software, 131(June), 104778. https://doi.org/10.1016/j.envsoft.2020.104778 Burnham, R. E., & Duffus, D. A. (2020). The use of passive acoustic monitoring as a census tool of gray whale (Eschrichtius robustus) migration. Ocean and Coastal Management, 188(December 2019), 105070. https://doi.org/10.1016/j.ocecoaman.2019.105070 Burnham, R. E., Duffus, D. A., & Malcolm, C. D. (2021). Towards an enhanced management of recreational whale watching : The use of ecological and behavioural data to support evidence-based management actions. Biological Conservation, 255(February), 109009. https://doi.org/10.1016/j.biocon.2021.109009 Cabrera, A. A., Bérubé, M., Lopes, X. M., Louis, M., Oosting, T., Rey-Iglesia, A., Rivera-León, V. E., Székely, D., Lorenzen, E. D., & Palsbøll, P. J. (2021). A Genetic Perspective on Cetacean Evolution. Annual Review of Ecology, Evolution, and Systematics, 52(November), 131–151. https://doi.org/10.1146/annurev-ecolsys-012021-105003 Chen, Z., & Wiens, J. J. (2020). The origins of acoustic communication in vertebrates. Nature Communications, 11(1), 1–8. https://doi.org/10.1038/s41467-020-14356-3 Churchill, M., Martinez-Caceres, M., de Muizon, C., Mnieckowski, J., & Geisler, J. H. (2016). The Origin of High-Frequency Hearing in Whales. Current Biology, 26(16), 2144–2149. https://doi.org/10.1016/j.cub.2016.06.004 Clark, C. W. (1990). Acoustic Behavior of Mysticete Whales. Sensory Abilities of Cetaceans, 571– 583. https://doi.org/10.1007/978-1-4899-0858-2_40 Cornwell, W., & Nakagawa, S. (2017). Phylogenetic comparative methods. Current Biology, 27(9), R333–R336. https://doi.org/10.1016/j.cub.2017.03.049 Cunha, H. A., Moraes, L. C., Medeiros, B. V., Lailson-Brito, J., da Silva, V. M. F., Solé-Cava, A. M., & Schrago, C. G. (2011). Phylogenetic status and timescale for the diversification of Steno and Sotalia dolphins. PLoS ONE, 6(12), 1–7. https://doi.org/10.1371/journal.pone.0028297 de Mello Bezerra, A., Potsch de Carvalho-e-Silva, S., & Pedreira Gonzaga, L. (2021). Evolution of acoustic signals in Neotropical leaf frogs. Animal Behaviour, 181, 41–49. https://doi.org/10.1016/j.anbehav.2021.08.014 Deméré, T. A., McGowen, M. R., Berta, A., & Gatesy, J. (2008). Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Systematic Biology, 57(1), 15–37. https://doi.org/10.1080/10635150701884632 Dréo, R., Bouffaut, L., Leroy, E., Barruol, G., & Samaran, F. (2019). Baleen whale distribution and seasonal occurrence revealed by an ocean bottom seismometer network in the Western Indian Ocean. Deep-Sea Research Part II: Topical Studies in Oceanography, 161(April 2018), 132–144. https://doi.org/10.1016/j.dsr2.2018.04.005 Espregueira Themudo, G., Alves, L. Q., Machado, A. M., Lopes-Marques, M., da Fonseca, R. R., Fonseca, M., Ruivo, R., & Castro, L. F. C. (2020). Losing Genes: The Evolutionary Remodeling of Cetacea Skin. Frontiers in Marine Science, 7(October). https://doi.org/10.3389/fmars.2020.592375 Fordyce, R. E. (2018). Cetacean Evolution. Encyclopedia of Marine Mammals, 1851, 180–185. https://doi.org/10.1016/b978-0-12-804327-1.00088-1 Garamszegi, L. Z. (2014). Modern phylogenetic comparative methods and their application in evolutionary biology. In Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology. https://doi.org/10.1007/978-3-662-43550-2 Gatesy, J., & McGowen, M. R. (2021). Higher level phylogeny of baleen whales. In The Bowhead Whale. INC. https://doi.org/10.1016/b978-0-12-818969-6.00001-7 Hasegawa, M., Kishino, H., & Yano, T. aki. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22(2), 160–174. https://doi.org/10.1007/BF02101694 Husson, A. F., Josse, J., Le, S., Mazet, J., & Husson, M. F. (2022). Package ‘ FactoMineR .’ Isler, M. L., Isler, P. R., & Whitney, B. M. (1998). Use of vocalizations to establish species limits in antbirds (Passeriformes: Thamnophilidae). Auk, 115(3), 577–590. https://doi.org/10.2307/4089407 Ivkovich, T., Filatova, O. A., Burdin, A. M., Sato, H., & Hoyt, E. (2010). The social organization of resident-type killer whales (Orcinus orca) in Avacha Gulf, Northwest Pacific, as revealed through association patterns and acoustic similarity. Mammalian Biology, 75(3), 198–210. https://doi.org/10.1016/j.mambio.2009.03.006 Jiang, J., Wang, X., Duan, F., Liu, W., Bu, L., Li, F., Li, C., Sun, Z., Ma, S., & Deng, C. (2019). Study of the relationship between pilot whale (Globicephala melas) behaviour and the ambiguity function of its sounds. Applied Acoustics, 146, 31–37. https://doi.org/10.1016/j.apacoust.2018.10.032 Kamilar, J. M., & Cooper, N. (2013). Phylogenetic signal in primate behaviour, ecology and life history. Philosophical Transactions of the Royal Society B: Biological Sciences, 368(1618). https://doi.org/10.1098/rstb.2012.0341 Matthews, J. N., Gordon, J. C. D., Macdonald, D. W., & Rendell, L. E. (1999). A review of frequency and time parameters of cetacean tonal calls. Bioacoustics, 10(1), 47–71. https://doi.org/10.1080/09524622.1999.9753418 May-collado, L. J., Agnarsson, I., & Wartzok, D. (2007). A phylogenetic review of tonal sound production in whales. August. https://doi.org/10.1186/1471-2148-7-136 McGowen, M. R. (2011). Toward the resolution of an explosive radiation-A multilocus phylogeny of oceanic dolphins (Delphinidae). Molecular Phylogenetics and Evolution, 60(3), 345–357. https://doi.org/10.1016/j.ympev.2011.05.003 McGowen, M. R., Tsagkogeorga, G., Álvarez-Carretero, S., Dos Reis, M., Struebig, M., Deaville, R., Jepson, P. D., Jarman, S., Polanowski, A., Morin, P. A., & Rossiter, S. J. (2020). Phylogenomic Resolution of the Cetacean Tree of Life Using Target Sequence Capture. Systematic Biology, 69(3), 479–501. https://doi.org/10.1093/sysbio/syz068 Mellinger, D. K., & Clark, C. W. (2006). MobySound: A reference archive for studying automatic recognition of marine mammal sounds. Applied Acoustics, 67(11–12), 1226–1242. https://doi.org/10.1016/j.apacoust.2006.06.002 Moore, S. E., Haug, T., Víkingsson, G. A., & Stenson, G. B. (2019). Progress in Oceanography Baleen whale ecology in arctic and subarctic seas in an era of rapid habitat alteration. Progress in Oceanography, 176(September 2018), 102118. https://doi.org/10.1016/j.pocean.2019.05.010 Münkemüller, T., Lavergne, S., Bzeznik, B., Dray, S., Jombart, T., Schiffers, K., & Thuiller, W. (2012). How to measure and test phylogenetic signal. Methods in Ecology and Evolution, 3(4), 743– 756. https://doi.org/10.1111/j.2041-210X.2012.00196.x Oswald, J. N., Barlow, J., & Norris, T. (2000). Acoustic identification of nine delphinid species in the eastern tropical Pacific Ocean. The Journal of the Acoustical Society of America, 108(5), 2635– 2635. https://doi.org/10.1121/1.4743807 Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature, 401(6756), 877– 884. https://doi.org/10.1038/44766 Palevitz, B. A. (2000). Evolutionary genomics. In Scientist (Vol. 14, Issue 16). Pavan, G., Favaretto, A., Scaravelli, D., & Macchio, S. (2015). Bioacoustics and ecoacoustics applied to environmental monitoring and management. September. Penar, W., Magiera, A., & Klocek, C. (2020). Applications of bioacoustics in animal ecology. In Ecological Complexity (Vol. 43). https://doi.org/10.1016/j.ecocom.2020.100847 Prieto, R., Tobeña, M., & Silva, M. A. (2017). Deep – Sea Research II Habitat preferences of baleen whales in a mid-latitude habitat. Deep-Sea Research Part II, 141(August 2016), 155–167. https://doi.org/10.1016/j.dsr2.2016.07.015 Rambaut, A., Drummond, A. J., Xie, D., Baele, G., & Suchard, M. A. (2017). Software for Systematics and Evolution Posterior summarisation in Bayesian phylogenetics using Tracer 1.7. Syst. Biol, 00(0), 1–3. https://doi.org/10.1093/sysbio/syy032/4989127 Reidenberg, J. S., & Laitman, J. T. (2007). Discovery of a low frequency sound source in mysticeti (baleen whales): Anatomical establishment of a vocal fold homolog. Anatomical Record, 290(6), 745–759. https://doi.org/10.1002/ar.20544 Revell, M. L. J. (2022). Phylogenetic Tools for Comparative Biology (and Other Things). 1. Roman, J., Estes, J. A., Morissette, L., Smith, C., Costa, D., McCarthy, J., Nation, J. B., Nicol, S., Pershing, A., & Smetacek, V. (2014). Whales as marine ecosystem engineers. Frontiers in Ecology and the Environment, 12(7), 377–385. https://doi.org/10.1890/130220 Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542. https://doi.org/10.1093/sysbio/sys029 Sasaki, T. A. S., Ikaido, M. A. N., Amilton, H. E. H., Oto, M. U. G., Ato, H. I. K., Anda, N. A. K., Astene, L. U. I. S. A. P., Ao, Y. I. N. G. C., Ordyce, R. E. W. A. N. F., Asegawa, M. A. H., & Kada, N. O. O. (2005). Mitochondrial Phylogenetics and Evolution of Mysticete Whales. 54(1), 77–90. https://doi.org/10.1080/10635150590905939 Schaffeld, T., Bräger, S., Gallus, A., Dähne, M., Krügel, K., Herrmann, A., Jabbusch, M., Ruf, T., Verfuß, U. K., Benke, H., & Koblitz, J. C. (2016). Diel and seasonal patterns in acoustic presence and foraging behaviour of free-ranging harbour porpoises. Marine Ecology Progress Series, 547(Au 1993), 257–272. https://doi.org/10.3354/meps11627 Sousa, A., Alves, F., Dinis, A., Bentz, J., Cruz, M. J., & Nunes, J. P. (2019). How vulnerable are cetaceans to climate change? Developing and testing a new index. Ecological Indicators, 98(October 2018), 9–18. https://doi.org/10.1016/j.ecolind.2018.10.046 info:eu-repo/semantics/closedAccess http://purl.org/coar/access_right/c_f1cf Macroevolución Método comparativo Variación de rasgos Movimiento browniano Cetáceos Macroevolution Comparative method Trait variation Brownian motion Cetaceans Animal Mamífero Trabajo de grado - Pregrado http://purl.org/coar/resource_type/c_7a1f Text info:eu-repo/semantics/bachelorThesis info:eu-repo/semantics/publishedVersion 2022 ftunivcaldas https://doi.org/10.1016/b978-0-12-804327-1.00087-x10.1007/978-1-4899-0858-2_4010.1016/b978-0-12-804327-1.00088-110.1007/978-3-662-43550-210.1016/j.ympev.2011.05.00310.1038/4476610.1016/j.ecoinf.2021.10122310.1093/molbev/msm088 2024-07-18T23:34:54Z Ilustraciones spa:Las relaciones filogenéticas en cetáceos han sido ampliamente analizadas empleando múltiples enfoques, desde el uso de datos morfológicos y secuencias de ADNmt o ADN nuclear hasta el uso del genoma. Además, la recuperación de fósiles y datos secundarios ha permitido comprender la historia evolutiva y los tiempos de divergencia de estos gigantes del mar. Combinados, estos estudios mejoran la comprensión del origen de los cetáceos; su adaptación y procesos de especiación. Aunque las señales acústicas son de gran importancia en cetáceos, pocos estudios evolutivos se han hecho sobre el origen y la variación de sus rasgos acústicos. En el presente estudio comparativo, analizamos los sonidos sociales de catorce especies de misticetos y evaluamos cuantitativamente su variabilidad acústica incorporando de forma integrada datos moleculares y acústicos. Primero discutimos los resultados del análisis filogenético y las implicaciones de los tiempos de divergencia inferidos en nuestra comprensión de la evolución de Cetacea y luego, empleamos un método comparativo basado en movimiento browniano para dilucidar la historia evolutiva de los sonidos sociales en Mysticeti, a partir del cual se evidenció que los sonidos sociales son específicos para cada especie de misticetos y cada taxón posee un conjunto único de variables acústicas. eng:Phylogenetic relationships in cetaceans have been extensively analyzed using multiple approaches, from the use of morphological data and mtDNA or nuclear DNA sequences to the use of the genome. In addition, the recovery of fossils and secondary data has made it possible to understand the evolutionary history and divergence times of these giants of the sea. Combined, these studies improve understanding of the origin of cetaceans; their adaptation and speciation processes. Although acoustic signals are of great importance in cetaceans, few evolutionary studies have been done on the origin and variation of their acoustic features. In this comparative study, we analyze the ... Bachelor Thesis Arctic Universidad de Caldas Repositorio Institucional 172 180