Holocene precipitation seasonality in northern Svalbard: Influence of sea ice and regional ocean surface conditions
This is a post-print of an article published in Quaternary Science Reviews. The version of record is available on the publisher site. Arctic precipitation is predicted to increase in the coming century, due to a combination of enhanced northward atmospheric moisture transport and local surface evapo...
Published in: | Quaternary Science Reviews |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Elsevier Ltd.
2020
|
Subjects: | |
Online Access: | http://hdl.handle.net/10477/84169 https://doi.org/10.1016/j.quascirev.2020.106388 |
id |
ftunivbuffalo:oai:ubir.buffalo.edu:10477/84169 |
---|---|
record_format |
openpolar |
spelling |
ftunivbuffalo:oai:ubir.buffalo.edu:10477/84169 2023-05-15T14:56:48+02:00 Holocene precipitation seasonality in northern Svalbard: Influence of sea ice and regional ocean surface conditions Kjellman, Sofia E. Schomacker, Anders Thomas, Elizabeth K. Hakansson, Lena Duboscq, Sandrine Cluett, Allison A. Farnsworth, Wesley R. Allaart, Lis Cowling, Owen C. McKay, Nicholas P. Brynjolfsson, Skafti Ingolfsson, Olafur 2020-06-13 application/pdf application/vnd.ms-excel http://hdl.handle.net/10477/84169 https://doi.org/10.1016/j.quascirev.2020.106388 eng eng Elsevier Ltd. doi:10.1016/j.quascirev.2020.106388 Kjellman, S.E., Schomacker, A., Thomas, E.K., Håkansson, L., Duboscq, S., Cluett, A.A., Farnsworth, W.R., Allaart, L., Cowling, O.C., McKay, N.P., Brynjólfsson, S., & Ingólfsson, Ó. (2020). Holocene precipitation seasonality in northern Svalbard: Influence of sea ice and regional ocean surface conditions. Quaternary Science Reviews, 240, 106388. https://doi.org/10.1016/j.quascirev.2020.106388 0277-3791 http://hdl.handle.net/10477/84169 Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0 The authors CC-BY Arctic biomarkers hydrogen isotopes lake lake sediment n-alkanoic acids paleoclimatology precipitation seasonality quaternary sea ice Text Article Postprint Dataset 2020 ftunivbuffalo https://doi.org/10.1016/j.quascirev.2020.106388 2022-07-10T16:18:11Z This is a post-print of an article published in Quaternary Science Reviews. The version of record is available on the publisher site. Arctic precipitation is predicted to increase in the coming century, due to a combination of enhanced northward atmospheric moisture transport and local surface evaporation from ice-free seas. However, large model uncertainties, limited long-term observations, and high spatiotemporal variability limit our understanding of these mechanisms, emphasizing the need for paleoclimate records of precipitation changes. Here we use lipid biomarkers in lake sediments to reconstruct precipitation seasonality in northern Spitsbergen, Svalbard. We measured the hydrogen isotopic ratios (δ2H) of n-alkanoic acids (C20–C30) from sedimentary leaf waxes in lake Austre Nevlingen, Spitsbergen. We interpret δ2H values of mid-chain (C22) and long-chain (C28) n-alkanoic acids to represent δ2H of lake and soil water, respectively. Austre Nevlingen lake water δ2H reflects amount-weighted mean annual precipitation δ2H. In contrast, soil water is mostly recharged by summer rainfall, and therefore reflects δ2H values of summer precipitation. Austre Nevlingen leaf wax δ2H values are 2H-depleted in the Early Holocene, suggesting high winter precipitation amounts. This coincides with high summer insolation, strong Atlantic water advection and reduced spring sea-ice cover in surrounding waters. Winter precipitation continued to dominate until c. 6 cal. kyr BP. After 6 cal. kyr BP, the trend in the biomarker record is not as clear. This could be related to colder conditions causing longer duration of seasonal lake-ice cover, thereby influencing the precipitation seasonality registered by the lake water. The Austre Nevlingen record suggests a close relationship between precipitation seasonality and regional ocean surface conditions, consistent with simulations suggesting that Arctic winter sea-ice loss will lead to increased local evaporation. Fieldwork, radiocarbon dates, and laboratory analyses were funded by ... Article in Journal/Newspaper Arctic Sea ice Svalbard Spitsbergen UBIR Repository (University at Buffalo Institutional Repository) Arctic Svalbard Quaternary Science Reviews 240 106388 |
institution |
Open Polar |
collection |
UBIR Repository (University at Buffalo Institutional Repository) |
op_collection_id |
ftunivbuffalo |
language |
English |
topic |
Arctic biomarkers hydrogen isotopes lake lake sediment n-alkanoic acids paleoclimatology precipitation seasonality quaternary sea ice |
spellingShingle |
Arctic biomarkers hydrogen isotopes lake lake sediment n-alkanoic acids paleoclimatology precipitation seasonality quaternary sea ice Kjellman, Sofia E. Schomacker, Anders Thomas, Elizabeth K. Hakansson, Lena Duboscq, Sandrine Cluett, Allison A. Farnsworth, Wesley R. Allaart, Lis Cowling, Owen C. McKay, Nicholas P. Brynjolfsson, Skafti Ingolfsson, Olafur Holocene precipitation seasonality in northern Svalbard: Influence of sea ice and regional ocean surface conditions |
topic_facet |
Arctic biomarkers hydrogen isotopes lake lake sediment n-alkanoic acids paleoclimatology precipitation seasonality quaternary sea ice |
description |
This is a post-print of an article published in Quaternary Science Reviews. The version of record is available on the publisher site. Arctic precipitation is predicted to increase in the coming century, due to a combination of enhanced northward atmospheric moisture transport and local surface evaporation from ice-free seas. However, large model uncertainties, limited long-term observations, and high spatiotemporal variability limit our understanding of these mechanisms, emphasizing the need for paleoclimate records of precipitation changes. Here we use lipid biomarkers in lake sediments to reconstruct precipitation seasonality in northern Spitsbergen, Svalbard. We measured the hydrogen isotopic ratios (δ2H) of n-alkanoic acids (C20–C30) from sedimentary leaf waxes in lake Austre Nevlingen, Spitsbergen. We interpret δ2H values of mid-chain (C22) and long-chain (C28) n-alkanoic acids to represent δ2H of lake and soil water, respectively. Austre Nevlingen lake water δ2H reflects amount-weighted mean annual precipitation δ2H. In contrast, soil water is mostly recharged by summer rainfall, and therefore reflects δ2H values of summer precipitation. Austre Nevlingen leaf wax δ2H values are 2H-depleted in the Early Holocene, suggesting high winter precipitation amounts. This coincides with high summer insolation, strong Atlantic water advection and reduced spring sea-ice cover in surrounding waters. Winter precipitation continued to dominate until c. 6 cal. kyr BP. After 6 cal. kyr BP, the trend in the biomarker record is not as clear. This could be related to colder conditions causing longer duration of seasonal lake-ice cover, thereby influencing the precipitation seasonality registered by the lake water. The Austre Nevlingen record suggests a close relationship between precipitation seasonality and regional ocean surface conditions, consistent with simulations suggesting that Arctic winter sea-ice loss will lead to increased local evaporation. Fieldwork, radiocarbon dates, and laboratory analyses were funded by ... |
format |
Article in Journal/Newspaper |
author |
Kjellman, Sofia E. Schomacker, Anders Thomas, Elizabeth K. Hakansson, Lena Duboscq, Sandrine Cluett, Allison A. Farnsworth, Wesley R. Allaart, Lis Cowling, Owen C. McKay, Nicholas P. Brynjolfsson, Skafti Ingolfsson, Olafur |
author_facet |
Kjellman, Sofia E. Schomacker, Anders Thomas, Elizabeth K. Hakansson, Lena Duboscq, Sandrine Cluett, Allison A. Farnsworth, Wesley R. Allaart, Lis Cowling, Owen C. McKay, Nicholas P. Brynjolfsson, Skafti Ingolfsson, Olafur |
author_sort |
Kjellman, Sofia E. |
title |
Holocene precipitation seasonality in northern Svalbard: Influence of sea ice and regional ocean surface conditions |
title_short |
Holocene precipitation seasonality in northern Svalbard: Influence of sea ice and regional ocean surface conditions |
title_full |
Holocene precipitation seasonality in northern Svalbard: Influence of sea ice and regional ocean surface conditions |
title_fullStr |
Holocene precipitation seasonality in northern Svalbard: Influence of sea ice and regional ocean surface conditions |
title_full_unstemmed |
Holocene precipitation seasonality in northern Svalbard: Influence of sea ice and regional ocean surface conditions |
title_sort |
holocene precipitation seasonality in northern svalbard: influence of sea ice and regional ocean surface conditions |
publisher |
Elsevier Ltd. |
publishDate |
2020 |
url |
http://hdl.handle.net/10477/84169 https://doi.org/10.1016/j.quascirev.2020.106388 |
geographic |
Arctic Svalbard |
geographic_facet |
Arctic Svalbard |
genre |
Arctic Sea ice Svalbard Spitsbergen |
genre_facet |
Arctic Sea ice Svalbard Spitsbergen |
op_relation |
doi:10.1016/j.quascirev.2020.106388 Kjellman, S.E., Schomacker, A., Thomas, E.K., Håkansson, L., Duboscq, S., Cluett, A.A., Farnsworth, W.R., Allaart, L., Cowling, O.C., McKay, N.P., Brynjólfsson, S., & Ingólfsson, Ó. (2020). Holocene precipitation seasonality in northern Svalbard: Influence of sea ice and regional ocean surface conditions. Quaternary Science Reviews, 240, 106388. https://doi.org/10.1016/j.quascirev.2020.106388 0277-3791 http://hdl.handle.net/10477/84169 |
op_rights |
Attribution 4.0 International (CC BY 4.0) https://creativecommons.org/licenses/by/4.0 The authors |
op_rightsnorm |
CC-BY |
op_doi |
https://doi.org/10.1016/j.quascirev.2020.106388 |
container_title |
Quaternary Science Reviews |
container_volume |
240 |
container_start_page |
106388 |
_version_ |
1766328874942070784 |