Resolving combined influences of inflow and evaporation on western Greenland lake water isotopes to inform paleoclimate inferences

Stable isotopes of oxygen (δ18O) and hydrogen (δ2H) in precipitation are widely employed tracers of the global hydrologic cycle, and are frequently inferred from lake-water-derived proxies in sediments of high-latitude lakes. Lake-water isotope proxies archive precipitation δ18O and δ2H values, modu...

Full description

Bibliographic Details
Published in:Journal of Paleolimnology
Main Authors: Cluett, Allison A., Thomas, Elizabeth K.
Format: Article in Journal/Newspaper
Language:English
Published: Springer Netherlands 2020
Subjects:
Online Access:http://hdl.handle.net/10477/81467
https://doi.org/10.1007/s10933-020-00114-4
id ftunivbuffalo:oai:ubir.buffalo.edu:10477/81467
record_format openpolar
spelling ftunivbuffalo:oai:ubir.buffalo.edu:10477/81467 2023-05-15T15:04:54+02:00 Resolving combined influences of inflow and evaporation on western Greenland lake water isotopes to inform paleoclimate inferences Cluett, Allison A. Thomas, Elizabeth K. 2020-02-05 application/pdf http://hdl.handle.net/10477/81467 https://doi.org/10.1007/s10933-020-00114-4 en eng Springer Netherlands doi:10.1007/s10933-020-00114-4 Cluett, A. A., & Thomas, E. K. (2020). Resolving combined influences of inflow and evaporation on western Greenland lake water isotopes to inform paleoclimate inferences. Journal of Paleolimnology, 1–18. https://doi.org/10.1007/s10933-020-00114-4 0921-2728 1573-0417 http://hdl.handle.net/10477/81467 Springer Nature B.V. lake water isotopes precipitation isotopes Arctic hydroclimate effective precipitation proxy interpretation Text Article Preprint 2020 ftunivbuffalo https://doi.org/10.1007/s10933-020-00114-4 2022-02-20T06:33:23Z Stable isotopes of oxygen (δ18O) and hydrogen (δ2H) in precipitation are widely employed tracers of the global hydrologic cycle, and are frequently inferred from lake-water-derived proxies in sediments of high-latitude lakes. Lake-water isotope proxies archive precipitation δ18O and δ2H values, modulated by lake hydrological processes, which may be functionally classified into processes that affect source water isotope values (i.e. inflow δ18O and δ2H) and catchment-integrated evaporation. Respectively, these controls form the basis of interpretations of precipitation isotope and effective precipitation signals from lake-water isotope proxy records. Conventionally, a single control on lake water isotope variability is assumed for a given record. Yet sensitivity to these controls depends on regional hydroclimate and local hydrology, which may change through time. We quantified the relative impacts of variations in inflow δ18O and evaporative 18O enrichment on lake water δ18O in response to spatially variable aridity, using measurements of lake water δ2H and δ18O from 140 western Greenland lakes located between the Labrador Sea and western Greenland Ice Sheet margin. We calculated source water δ18O of lake waters (δI) using a recently developed Bayesian method and quantified evaporation-to-inflow ratios (E/I) using a modified Craig-Gordon model. δI varied by 11.1‰ across the study region, superimposed by evaporative 18O enrichment of up to 20.0‰ and E/I ranging from nearly no evaporative loss (E/I < 0.10) to desiccation (E/I > 1). Lakes can be broadly classified as predominantly sensitive to inflow or evaporation, corresponding to their location along the aridity gradient, and there are significant trends in both δI and E/I across the study area. Substantial local variability in δI and E/I suggests catchment hydrology determines the sensitivity of δI and E/I to changes in aridity, and implies that hydrological end-member lakes within a small region may provide complementary records of seasonal precipitation isotope values and ice-free-season evaporation. Deconvolving modern controls on lake water isotope values provides essential support for quantitative and seasonal paleoclimate inferences from paleolimnological isotope data, which will improve constraints on the long-term variability of the Arctic hydrologic cycle. Article in Journal/Newspaper Arctic Greenland Ice Sheet Labrador Sea UBIR Repository (University at Buffalo Institutional Repository) Arctic Greenland Journal of Paleolimnology 63 4 251 268
institution Open Polar
collection UBIR Repository (University at Buffalo Institutional Repository)
op_collection_id ftunivbuffalo
language English
topic lake water isotopes
precipitation isotopes
Arctic
hydroclimate
effective precipitation
proxy interpretation
spellingShingle lake water isotopes
precipitation isotopes
Arctic
hydroclimate
effective precipitation
proxy interpretation
Cluett, Allison A.
Thomas, Elizabeth K.
Resolving combined influences of inflow and evaporation on western Greenland lake water isotopes to inform paleoclimate inferences
topic_facet lake water isotopes
precipitation isotopes
Arctic
hydroclimate
effective precipitation
proxy interpretation
description Stable isotopes of oxygen (δ18O) and hydrogen (δ2H) in precipitation are widely employed tracers of the global hydrologic cycle, and are frequently inferred from lake-water-derived proxies in sediments of high-latitude lakes. Lake-water isotope proxies archive precipitation δ18O and δ2H values, modulated by lake hydrological processes, which may be functionally classified into processes that affect source water isotope values (i.e. inflow δ18O and δ2H) and catchment-integrated evaporation. Respectively, these controls form the basis of interpretations of precipitation isotope and effective precipitation signals from lake-water isotope proxy records. Conventionally, a single control on lake water isotope variability is assumed for a given record. Yet sensitivity to these controls depends on regional hydroclimate and local hydrology, which may change through time. We quantified the relative impacts of variations in inflow δ18O and evaporative 18O enrichment on lake water δ18O in response to spatially variable aridity, using measurements of lake water δ2H and δ18O from 140 western Greenland lakes located between the Labrador Sea and western Greenland Ice Sheet margin. We calculated source water δ18O of lake waters (δI) using a recently developed Bayesian method and quantified evaporation-to-inflow ratios (E/I) using a modified Craig-Gordon model. δI varied by 11.1‰ across the study region, superimposed by evaporative 18O enrichment of up to 20.0‰ and E/I ranging from nearly no evaporative loss (E/I < 0.10) to desiccation (E/I > 1). Lakes can be broadly classified as predominantly sensitive to inflow or evaporation, corresponding to their location along the aridity gradient, and there are significant trends in both δI and E/I across the study area. Substantial local variability in δI and E/I suggests catchment hydrology determines the sensitivity of δI and E/I to changes in aridity, and implies that hydrological end-member lakes within a small region may provide complementary records of seasonal precipitation isotope values and ice-free-season evaporation. Deconvolving modern controls on lake water isotope values provides essential support for quantitative and seasonal paleoclimate inferences from paleolimnological isotope data, which will improve constraints on the long-term variability of the Arctic hydrologic cycle.
format Article in Journal/Newspaper
author Cluett, Allison A.
Thomas, Elizabeth K.
author_facet Cluett, Allison A.
Thomas, Elizabeth K.
author_sort Cluett, Allison A.
title Resolving combined influences of inflow and evaporation on western Greenland lake water isotopes to inform paleoclimate inferences
title_short Resolving combined influences of inflow and evaporation on western Greenland lake water isotopes to inform paleoclimate inferences
title_full Resolving combined influences of inflow and evaporation on western Greenland lake water isotopes to inform paleoclimate inferences
title_fullStr Resolving combined influences of inflow and evaporation on western Greenland lake water isotopes to inform paleoclimate inferences
title_full_unstemmed Resolving combined influences of inflow and evaporation on western Greenland lake water isotopes to inform paleoclimate inferences
title_sort resolving combined influences of inflow and evaporation on western greenland lake water isotopes to inform paleoclimate inferences
publisher Springer Netherlands
publishDate 2020
url http://hdl.handle.net/10477/81467
https://doi.org/10.1007/s10933-020-00114-4
geographic Arctic
Greenland
geographic_facet Arctic
Greenland
genre Arctic
Greenland
Ice Sheet
Labrador Sea
genre_facet Arctic
Greenland
Ice Sheet
Labrador Sea
op_relation doi:10.1007/s10933-020-00114-4
Cluett, A. A., & Thomas, E. K. (2020). Resolving combined influences of inflow and evaporation on western Greenland lake water isotopes to inform paleoclimate inferences. Journal of Paleolimnology, 1–18. https://doi.org/10.1007/s10933-020-00114-4
0921-2728
1573-0417
http://hdl.handle.net/10477/81467
op_rights Springer Nature B.V.
op_doi https://doi.org/10.1007/s10933-020-00114-4
container_title Journal of Paleolimnology
container_volume 63
container_issue 4
container_start_page 251
op_container_end_page 268
_version_ 1766336649572122624