Predicting radar attenuation within the Antarctic ice sheet

To better understand the ability of ice-penetrating radar to diagnose the subglacial environment from bed-returned power, we model the englacial radar attenuation of Antarctic ice. First, we use a one-dimensional thermo-mechanical model to evaluate the sensitivity of the depth-averaged attenuation r...

Full description

Bibliographic Details
Main Authors: Matsuoka, Kenichi, MacGregor, Joseph A., Pattyn, Frank
Format: Article in Journal/Newspaper
Language:English
Published: 2012
Subjects:
Online Access:http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/168469
https://dipot.ulb.ac.be/dspace/bitstream/2013/168469/1/Elsevier_152099.pdf
id ftunivbruxelles:oai:dipot.ulb.ac.be:2013/168469
record_format openpolar
spelling ftunivbruxelles:oai:dipot.ulb.ac.be:2013/168469 2023-05-15T13:37:29+02:00 Predicting radar attenuation within the Antarctic ice sheet Matsuoka, Kenichi MacGregor, Joseph A. Pattyn, Frank 2012-12 1 full-text file(s): application/pdf http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/168469 https://dipot.ulb.ac.be/dspace/bitstream/2013/168469/1/Elsevier_152099.pdf en eng uri/info:doi/10.1016/j.epsl.2012.10.018 uri/info:pii/S0012821X1200578X uri/info:scp/84868591086 https://dipot.ulb.ac.be/dspace/bitstream/2013/168469/1/Elsevier_152099.pdf http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/168469 1 full-text file(s): info:eu-repo/semantics/restrictedAccess Earth and planetary science letters, 359-360 Sciences de l'espace Géographie physique Pétrologie Géochimie Sciences de la terre et du cosmos Antarctic ice sheet Englacial attenuation Radar remote sensing Subglacial environment Thermo-mechanical modeling info:eu-repo/semantics/article info:ulb-repo/semantics/articlePeerReview info:ulb-repo/semantics/openurl/article 2012 ftunivbruxelles 2022-06-12T22:09:17Z To better understand the ability of ice-penetrating radar to diagnose the subglacial environment from bed-returned power, we model the englacial radar attenuation of Antarctic ice. First, we use a one-dimensional thermo-mechanical model to evaluate the sensitivity of the depth-averaged attenuation rates to ice temperature as a function of surface accumulation rate, geothermal flux, and ice thickness. We find that attenuation is most sensitive to variations in geothermal flux and accumulation rate when the bed temperature is close to the pressure-melting point. But even if geothermal flux and accumulation rate remain fixed, attenuation can easily vary with ice thickness. Such high sensitivities show that one should not assume a uniform attenuation rate in the radar data analysis. Then, using ensembles of modeled ice temperatures with different boundary conditions, we generate multiple attenuation predictions for the Antarctic ice sheet and evaluate the resulting uncertainties. The largest contributor to uncertainty in these predictions is the geothermal flux. This uncertainty is localized within the deeper half of the ice sheet. By combining these temperature ensembles with ice-core chemistry data, we show that the sea salt adds little to the attenuation, but the contribution from acids accounts for ~29% (inland) to ~53% (coast) of the total attenuation. We conclude that improving radar diagnosis of the subglacial environment using bed-returned power requires both (1) better data-interpretation algorithms that account for attenuation variations and (2) better constraints of geothermal flux and bulk chemistry. © 2012 Elsevier B.V. SCOPUS: ar.j info:eu-repo/semantics/published Article in Journal/Newspaper Antarc* Antarctic ice core Ice Sheet DI-fusion : dépôt institutionnel de l'Université libre de Bruxelles (ULB) Antarctic The Antarctic
institution Open Polar
collection DI-fusion : dépôt institutionnel de l'Université libre de Bruxelles (ULB)
op_collection_id ftunivbruxelles
language English
topic Sciences de l'espace
Géographie physique
Pétrologie
Géochimie
Sciences de la terre et du cosmos
Antarctic ice sheet
Englacial attenuation
Radar remote sensing
Subglacial environment
Thermo-mechanical modeling
spellingShingle Sciences de l'espace
Géographie physique
Pétrologie
Géochimie
Sciences de la terre et du cosmos
Antarctic ice sheet
Englacial attenuation
Radar remote sensing
Subglacial environment
Thermo-mechanical modeling
Matsuoka, Kenichi
MacGregor, Joseph A.
Pattyn, Frank
Predicting radar attenuation within the Antarctic ice sheet
topic_facet Sciences de l'espace
Géographie physique
Pétrologie
Géochimie
Sciences de la terre et du cosmos
Antarctic ice sheet
Englacial attenuation
Radar remote sensing
Subglacial environment
Thermo-mechanical modeling
description To better understand the ability of ice-penetrating radar to diagnose the subglacial environment from bed-returned power, we model the englacial radar attenuation of Antarctic ice. First, we use a one-dimensional thermo-mechanical model to evaluate the sensitivity of the depth-averaged attenuation rates to ice temperature as a function of surface accumulation rate, geothermal flux, and ice thickness. We find that attenuation is most sensitive to variations in geothermal flux and accumulation rate when the bed temperature is close to the pressure-melting point. But even if geothermal flux and accumulation rate remain fixed, attenuation can easily vary with ice thickness. Such high sensitivities show that one should not assume a uniform attenuation rate in the radar data analysis. Then, using ensembles of modeled ice temperatures with different boundary conditions, we generate multiple attenuation predictions for the Antarctic ice sheet and evaluate the resulting uncertainties. The largest contributor to uncertainty in these predictions is the geothermal flux. This uncertainty is localized within the deeper half of the ice sheet. By combining these temperature ensembles with ice-core chemistry data, we show that the sea salt adds little to the attenuation, but the contribution from acids accounts for ~29% (inland) to ~53% (coast) of the total attenuation. We conclude that improving radar diagnosis of the subglacial environment using bed-returned power requires both (1) better data-interpretation algorithms that account for attenuation variations and (2) better constraints of geothermal flux and bulk chemistry. © 2012 Elsevier B.V. SCOPUS: ar.j info:eu-repo/semantics/published
format Article in Journal/Newspaper
author Matsuoka, Kenichi
MacGregor, Joseph A.
Pattyn, Frank
author_facet Matsuoka, Kenichi
MacGregor, Joseph A.
Pattyn, Frank
author_sort Matsuoka, Kenichi
title Predicting radar attenuation within the Antarctic ice sheet
title_short Predicting radar attenuation within the Antarctic ice sheet
title_full Predicting radar attenuation within the Antarctic ice sheet
title_fullStr Predicting radar attenuation within the Antarctic ice sheet
title_full_unstemmed Predicting radar attenuation within the Antarctic ice sheet
title_sort predicting radar attenuation within the antarctic ice sheet
publishDate 2012
url http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/168469
https://dipot.ulb.ac.be/dspace/bitstream/2013/168469/1/Elsevier_152099.pdf
geographic Antarctic
The Antarctic
geographic_facet Antarctic
The Antarctic
genre Antarc*
Antarctic
ice core
Ice Sheet
genre_facet Antarc*
Antarctic
ice core
Ice Sheet
op_source Earth and planetary science letters, 359-360
op_relation uri/info:doi/10.1016/j.epsl.2012.10.018
uri/info:pii/S0012821X1200578X
uri/info:scp/84868591086
https://dipot.ulb.ac.be/dspace/bitstream/2013/168469/1/Elsevier_152099.pdf
http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/168469
op_rights 1 full-text file(s): info:eu-repo/semantics/restrictedAccess
_version_ 1766092504576294912