Pyrolysis of some western Canadian coals in a spouted bed reactor

Coal pyrolysis has been studied in a 12.8 cm diameter continuous spouted bed reactor with the aim of determining conditions for maximum liquid yields from Western Canadian coals. Coals studied included two British Columbia bituminous coals and one Alberta sub-bituminous coal. The basic characteristi...

Full description

Bibliographic Details
Main Author: Jarallah, Adnan Mohammed
Format: Thesis
Language:English
Published: University of British Columbia 1983
Subjects:
Online Access:http://hdl.handle.net/2429/24303
id ftunivbritcolcir:oai:circle.library.ubc.ca:2429/24303
record_format openpolar
spelling ftunivbritcolcir:oai:circle.library.ubc.ca:2429/24303 2023-05-15T17:54:52+02:00 Pyrolysis of some western Canadian coals in a spouted bed reactor Jarallah, Adnan Mohammed Alberta British Columbia 1983 http://hdl.handle.net/2429/24303 eng eng University of British Columbia For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use. Pyrolysis Coal -- Canada Text Thesis/Dissertation 1983 ftunivbritcolcir 2019-10-15T17:57:01Z Coal pyrolysis has been studied in a 12.8 cm diameter continuous spouted bed reactor with the aim of determining conditions for maximum liquid yields from Western Canadian coals. Coals studied included two British Columbia bituminous coals and one Alberta sub-bituminous coal. The basic characteristics of the spouted bed pyrolyzer were determined by carrying out experiments over a range of spouting gas velocities and composition, coal feed rates and particle size, reactor temperatures, and bed heights. The process was assessed by measuring the yields and compositions of the tar, char, and gas. Nitrogen and nitrogen/carbon dioxide mixtures and coal of size - 3.36 + 1.19 mm were fed at atmospheric pressure to an electrically heated reactor containing sand. The tar yield was determined by sampling the outlet gas through a series of cooled impingers. The spouted bed pyrolyzer behaves in a manner similar to a fluidized bed unit, and shows a maximum tar yield with temperature at a fixed feed rate. At a given pyrolyzer temperature, the tar yield was inversely proportional to the coal feed rate over the range 0.4 to 7.6 kg/h. This effect is attributed to the detrimental effect on tar yield of the increasing amounts of char present in the reactor as coal feed rate increases. Coal type strongly influenced the liquid yields as expected. Sukunka bituminous coal from the Peace River coal field gave a maximum tar yield at 600°C of 31% wt/wt MAF coal. The corresponding gas yield was 3.6%, and the char yield was 64%. The maximum tar yield from Balmer bituminous coal from Crowsnest coal field was 19.4% wt/wt MAF coal at 580°C while that from a high-ash Balmer bituminous coal was 12.1% at 620°C. Forestburg sub-bituminous coal from the Edmonton formation gave a maximum tar yield of 21% at 530°C and significantly higher gas yields of 20% versus 6% for the bituminous coals due to higher C02 production. With Sukunka coal, a steady increase in tar yield from 20.4 to 26.7% wt/wt MAF coal at 580°C was found as the average coal particle size was reduced from 2.28 to 0.65 mm. No significant effects on tar yield were found for variations in spouted bed depth, or vapour residence time over the range 0.68 -1.15 s. No serious problems were encountered with agglomeration. Composition of gas, tar and char are presented for conditions of maximum tar yield for the various coals tested. The H/C atomic ratio of the tars was as high as twice that of the parent coal. Oxygen, sulphur and nitrogen together represent up to 10 wt% of the bituminous coal tars, which suggests considerable upgrading will be necessary to produce liquids of quality comparable to petroleum oils. The total volatiles yield data were well represented by a first order kinetic model. An activation energy of 4.71 kcal/mole was obtained for the sub-bituminous coal while that for the bituminous coals was 14.1 kcal/mole. Applied Science, Faculty of Chemical and Biological Engineering, Department of Graduate Thesis Peace River University of British Columbia: cIRcle - UBC's Information Repository British Columbia ENVELOPE(-125.003,-125.003,54.000,54.000) Canada Crowsnest ENVELOPE(-55.865,-55.865,52.733,52.733)
institution Open Polar
collection University of British Columbia: cIRcle - UBC's Information Repository
op_collection_id ftunivbritcolcir
language English
topic Pyrolysis
Coal -- Canada
spellingShingle Pyrolysis
Coal -- Canada
Jarallah, Adnan Mohammed
Pyrolysis of some western Canadian coals in a spouted bed reactor
topic_facet Pyrolysis
Coal -- Canada
description Coal pyrolysis has been studied in a 12.8 cm diameter continuous spouted bed reactor with the aim of determining conditions for maximum liquid yields from Western Canadian coals. Coals studied included two British Columbia bituminous coals and one Alberta sub-bituminous coal. The basic characteristics of the spouted bed pyrolyzer were determined by carrying out experiments over a range of spouting gas velocities and composition, coal feed rates and particle size, reactor temperatures, and bed heights. The process was assessed by measuring the yields and compositions of the tar, char, and gas. Nitrogen and nitrogen/carbon dioxide mixtures and coal of size - 3.36 + 1.19 mm were fed at atmospheric pressure to an electrically heated reactor containing sand. The tar yield was determined by sampling the outlet gas through a series of cooled impingers. The spouted bed pyrolyzer behaves in a manner similar to a fluidized bed unit, and shows a maximum tar yield with temperature at a fixed feed rate. At a given pyrolyzer temperature, the tar yield was inversely proportional to the coal feed rate over the range 0.4 to 7.6 kg/h. This effect is attributed to the detrimental effect on tar yield of the increasing amounts of char present in the reactor as coal feed rate increases. Coal type strongly influenced the liquid yields as expected. Sukunka bituminous coal from the Peace River coal field gave a maximum tar yield at 600°C of 31% wt/wt MAF coal. The corresponding gas yield was 3.6%, and the char yield was 64%. The maximum tar yield from Balmer bituminous coal from Crowsnest coal field was 19.4% wt/wt MAF coal at 580°C while that from a high-ash Balmer bituminous coal was 12.1% at 620°C. Forestburg sub-bituminous coal from the Edmonton formation gave a maximum tar yield of 21% at 530°C and significantly higher gas yields of 20% versus 6% for the bituminous coals due to higher C02 production. With Sukunka coal, a steady increase in tar yield from 20.4 to 26.7% wt/wt MAF coal at 580°C was found as the average coal particle size was reduced from 2.28 to 0.65 mm. No significant effects on tar yield were found for variations in spouted bed depth, or vapour residence time over the range 0.68 -1.15 s. No serious problems were encountered with agglomeration. Composition of gas, tar and char are presented for conditions of maximum tar yield for the various coals tested. The H/C atomic ratio of the tars was as high as twice that of the parent coal. Oxygen, sulphur and nitrogen together represent up to 10 wt% of the bituminous coal tars, which suggests considerable upgrading will be necessary to produce liquids of quality comparable to petroleum oils. The total volatiles yield data were well represented by a first order kinetic model. An activation energy of 4.71 kcal/mole was obtained for the sub-bituminous coal while that for the bituminous coals was 14.1 kcal/mole. Applied Science, Faculty of Chemical and Biological Engineering, Department of Graduate
format Thesis
author Jarallah, Adnan Mohammed
author_facet Jarallah, Adnan Mohammed
author_sort Jarallah, Adnan Mohammed
title Pyrolysis of some western Canadian coals in a spouted bed reactor
title_short Pyrolysis of some western Canadian coals in a spouted bed reactor
title_full Pyrolysis of some western Canadian coals in a spouted bed reactor
title_fullStr Pyrolysis of some western Canadian coals in a spouted bed reactor
title_full_unstemmed Pyrolysis of some western Canadian coals in a spouted bed reactor
title_sort pyrolysis of some western canadian coals in a spouted bed reactor
publisher University of British Columbia
publishDate 1983
url http://hdl.handle.net/2429/24303
op_coverage Alberta
British Columbia
long_lat ENVELOPE(-125.003,-125.003,54.000,54.000)
ENVELOPE(-55.865,-55.865,52.733,52.733)
geographic British Columbia
Canada
Crowsnest
geographic_facet British Columbia
Canada
Crowsnest
genre Peace River
genre_facet Peace River
op_rights For non-commercial purposes only, such as research, private study and education. Additional conditions apply, see Terms of Use https://open.library.ubc.ca/terms_of_use.
_version_ 1766162719451381760