Ageostrophic dynamics in the ocean interior

The ocean is the largest solar energy collector on Earth. The amount of heat it can store is modulated by its complex circulation, which spans a broad range of spatial scales, from centimeters to thousands of kilometers. This dissertation investigates two types of physical processes: mesoscale eddie...

Full description

Bibliographic Details
Main Author: Siegelman, Lia
Other Authors: Laboratoire des Sciences de l'Environnement Marin (LEMAR) (LEMAR), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Université de Bretagne occidentale - Brest, Patrice Klein, Pascal Rivière
Format: Doctoral or Postdoctoral Thesis
Language:French
Published: HAL CCSD 2019
Subjects:
Online Access:https://theses.hal.science/tel-02998433
https://theses.hal.science/tel-02998433/document
https://theses.hal.science/tel-02998433/file/These-2019-SML-Oceanographie_physique_et_environnement-SIEGELMAN_Lia.pdf
Description
Summary:The ocean is the largest solar energy collector on Earth. The amount of heat it can store is modulated by its complex circulation, which spans a broad range of spatial scales, from centimeters to thousands of kilometers. This dissertation investigates two types of physical processes: mesoscale eddies (100-300 km size) and submesoscale fronts (£ 50 km size). To date, ageostrophic submesoscale motions are thought to be mainly trapped within the ocean surface mixed layer, and to be weak in the ocean interior. This is because, in the classical paradigm, motions below the mixed layer are broadly assumed to be in quasigeostrophic balance, preventing the formation of strong buoyancy gradients at depth. This dissertation introduces a paradigm shift; based on a combination of high-resolution in situ CTD data collected by instrumented elephant seals, satellite observations of sea surface height, and high-resolution model outputs in the Antarctic Circumpolar Current, we show that ageostrophic motions (i) are generated by the backgound mesoscale eddy field via frontogenesis processes, and (ii) are not solely confined to the ocean surface mixed layer but, rather, can extend in the ocean interior down to depths of 1 000 m. Deepreaching ageostrophic fronts are shown to drive an anomalous upward heat transport from the ocean interior back to the surface that is larger than other contributions to vertical heat transport and of comparable magnitude to air-sea fluxes. This effect can potentially alter oceanic heat uptake and will be strongest in eddy-rich regions such as the Antarctic Circumpolar Current, the Kuroshio Extension, and the Gulf Stream, all of which are key players in the climate system. As such, ageostrophic fronts at submesoscale provide an important, yet unexplored, pathway for the transport of heat, chemical and biological tracers, between the ocean interior and the surface, with potential major implications for the biogeochemical and climate systems. L'océan est le plus grand réservoir d'énergie solaire de ...