Deep Learning for Ship Classification on Medium Resolution SAR Imagery
International audience This research delves into the classification of maritime vessels, utilizing medium-resolution Synthetic Aperture Radar (SAR) imagery obtained from Sentinel-1, alongside Automatic Identification System (AIS) data streams. The investigation is specifically designed to address a...
Main Authors: | , , , |
---|---|
Other Authors: | , , , , , , , , , , , , , |
Format: | Conference Object |
Language: | English |
Published: |
CCSD
2023
|
Subjects: | |
Online Access: | https://hal.science/hal-04277648 https://hal.science/hal-04277648v2/document https://hal.science/hal-04277648v2/file/Ship_classification_v12%20%281%29.pdf |
_version_ | 1835017207902371840 |
---|---|
author | Moujahid, Bou, Laouz Rodolphe, Vadaine Guillaume, Hajduch Fablet, Ronan |
author2 | Equipe Observations Signal & Environnement (Lab-STICC_OSE) Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC) École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT) Département Mathematical and Electrical Engineering (IMT Atlantique - MEE) IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT) Collecte Localisation Satellites (CLS) Océan Dynamique Observations Analyse (ODYSSEY) Université de Rennes (UR)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre Inria de l'Université de Rennes Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-IMT Atlantique (IMT Atlantique) This work was performed under a research contract betweenCLS and IMT Atlantique. Part of the work was foundedsupported by ”France Relance”. We used Sentinel-1 dataacquired between 2017 and 2022 as part of the CopernicusSentinel programme. European Space Agency (ESA) |
author_facet | Moujahid, Bou, Laouz Rodolphe, Vadaine Guillaume, Hajduch Fablet, Ronan |
author_sort | Moujahid, Bou, Laouz |
collection | Unknown |
description | International audience This research delves into the classification of maritime vessels, utilizing medium-resolution Synthetic Aperture Radar (SAR) imagery obtained from Sentinel-1, alongside Automatic Identification System (AIS) data streams. The investigation is specifically designed to address a ternary classification challenge involving three distinct ship categories: Tanker, Cargo, and Others. Leveraging a dataset comprising over 80,000 ship images, a Convolutional Neural Network (CNN) ensemble is applied. The results reveal a total classification accuracy of 79%. |
format | Conference Object |
genre | Longyearbyen |
genre_facet | Longyearbyen |
geographic | Longyearbyen Norway |
geographic_facet | Longyearbyen Norway |
id | ftunivbrest:oai:HAL:hal-04277648v2 |
institution | Open Polar |
language | English |
op_collection_id | ftunivbrest |
op_coverage | longyearbyen, Norway |
op_rights | http://hal.archives-ouvertes.fr/licences/publicDomain/ info:eu-repo/semantics/OpenAccess |
op_source | SeaSAR 2023: workshop on Coastal and Marine applications of SAR https://hal.science/hal-04277648 SeaSAR 2023: workshop on Coastal and Marine applications of SAR, European Space Agency (ESA), May 2023, longyearbyen, Norway. pp.1-3 |
publishDate | 2023 |
publisher | CCSD |
record_format | openpolar |
spelling | ftunivbrest:oai:HAL:hal-04277648v2 2025-06-15T14:35:10+00:00 Deep Learning for Ship Classification on Medium Resolution SAR Imagery Moujahid, Bou, Laouz Rodolphe, Vadaine Guillaume, Hajduch Fablet, Ronan Equipe Observations Signal & Environnement (Lab-STICC_OSE) Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC) École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT) Département Mathematical and Electrical Engineering (IMT Atlantique - MEE) IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT)-Institut Mines-Télécom Paris (IMT) Collecte Localisation Satellites (CLS) Océan Dynamique Observations Analyse (ODYSSEY) Université de Rennes (UR)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre Inria de l'Université de Rennes Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-IMT Atlantique (IMT Atlantique) This work was performed under a research contract betweenCLS and IMT Atlantique. Part of the work was foundedsupported by ”France Relance”. We used Sentinel-1 dataacquired between 2017 and 2022 as part of the CopernicusSentinel programme. European Space Agency (ESA) longyearbyen, Norway 2023-05-02 https://hal.science/hal-04277648 https://hal.science/hal-04277648v2/document https://hal.science/hal-04277648v2/file/Ship_classification_v12%20%281%29.pdf en eng CCSD http://hal.archives-ouvertes.fr/licences/publicDomain/ info:eu-repo/semantics/OpenAccess SeaSAR 2023: workshop on Coastal and Marine applications of SAR https://hal.science/hal-04277648 SeaSAR 2023: workshop on Coastal and Marine applications of SAR, European Space Agency (ESA), May 2023, longyearbyen, Norway. pp.1-3 SAR Synthetic Aperture Radar Sentinel-1 Ship Classification Medium resolution AIS Deep Learning [SDE]Environmental Sciences [MATH]Mathematics [math] [PHYS]Physics [physics] info:eu-repo/semantics/conferenceObject Conference papers 2023 ftunivbrest 2025-05-19T05:03:26Z International audience This research delves into the classification of maritime vessels, utilizing medium-resolution Synthetic Aperture Radar (SAR) imagery obtained from Sentinel-1, alongside Automatic Identification System (AIS) data streams. The investigation is specifically designed to address a ternary classification challenge involving three distinct ship categories: Tanker, Cargo, and Others. Leveraging a dataset comprising over 80,000 ship images, a Convolutional Neural Network (CNN) ensemble is applied. The results reveal a total classification accuracy of 79%. Conference Object Longyearbyen Unknown Longyearbyen Norway |
spellingShingle | SAR Synthetic Aperture Radar Sentinel-1 Ship Classification Medium resolution AIS Deep Learning [SDE]Environmental Sciences [MATH]Mathematics [math] [PHYS]Physics [physics] Moujahid, Bou, Laouz Rodolphe, Vadaine Guillaume, Hajduch Fablet, Ronan Deep Learning for Ship Classification on Medium Resolution SAR Imagery |
title | Deep Learning for Ship Classification on Medium Resolution SAR Imagery |
title_full | Deep Learning for Ship Classification on Medium Resolution SAR Imagery |
title_fullStr | Deep Learning for Ship Classification on Medium Resolution SAR Imagery |
title_full_unstemmed | Deep Learning for Ship Classification on Medium Resolution SAR Imagery |
title_short | Deep Learning for Ship Classification on Medium Resolution SAR Imagery |
title_sort | deep learning for ship classification on medium resolution sar imagery |
topic | SAR Synthetic Aperture Radar Sentinel-1 Ship Classification Medium resolution AIS Deep Learning [SDE]Environmental Sciences [MATH]Mathematics [math] [PHYS]Physics [physics] |
topic_facet | SAR Synthetic Aperture Radar Sentinel-1 Ship Classification Medium resolution AIS Deep Learning [SDE]Environmental Sciences [MATH]Mathematics [math] [PHYS]Physics [physics] |
url | https://hal.science/hal-04277648 https://hal.science/hal-04277648v2/document https://hal.science/hal-04277648v2/file/Ship_classification_v12%20%281%29.pdf |