Optimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengal

International audience Improving our ability to monitor ocean carbonate chemistry has become a priority as the ocean continues to absorb carbon dioxide from the atmosphere. This long-term uptake is reducing the ocean pH; a process commonly known as ocean acidification. The use of satellite Earth Obs...

Full description

Bibliographic Details
Published in:Remote Sensing of Environment
Main Authors: Land, Peter E., Findlay, Helen S., Shutler, Jamie D., Ashton, Ian, Holding, Thomas, Grouazel, Antoine, Girard-Ardhuin, Fanny, Reul, Nicolas, Piolle, Jean-Francois, Chapron, Bertrand, Quilfen, Yves, Bellerby, Richard G.J., Bhadury, Punyasloke, Salisbury, Joseph, Vandemark, Douglas, Sabia, Roberto
Other Authors: Laboratoire d'Océanographie Physique et Spatiale (LOPS), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal.science/hal-04202447
https://doi.org/10.1016/j.rse.2019.111469
id ftunivbrest:oai:HAL:hal-04202447v1
record_format openpolar
spelling ftunivbrest:oai:HAL:hal-04202447v1 2024-04-14T08:17:48+00:00 Optimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengal Land, Peter E. Findlay, Helen S. Shutler, Jamie D. Ashton, Ian Holding, Thomas Grouazel, Antoine Girard-Ardhuin, Fanny Reul, Nicolas Piolle, Jean-Francois Chapron, Bertrand Quilfen, Yves Bellerby, Richard G.J. Bhadury, Punyasloke Salisbury, Joseph Vandemark, Douglas Sabia, Roberto Laboratoire d'Océanographie Physique et Spatiale (LOPS) Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) 2019-12 https://hal.science/hal-04202447 https://doi.org/10.1016/j.rse.2019.111469 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rse.2019.111469 hal-04202447 https://hal.science/hal-04202447 doi:10.1016/j.rse.2019.111469 ISSN: 0034-4257 EISSN: 1879-0704 Remote Sensing of Environment https://hal.science/hal-04202447 Remote Sensing of Environment, 2019, 235, 111469 (15p.). &#x27E8;10.1016/j.rse.2019.111469&#x27E9; [SDU]Sciences of the Universe [physics] info:eu-repo/semantics/article Journal articles 2019 ftunivbrest https://doi.org/10.1016/j.rse.2019.111469 2024-03-21T16:22:40Z International audience Improving our ability to monitor ocean carbonate chemistry has become a priority as the ocean continues to absorb carbon dioxide from the atmosphere. This long-term uptake is reducing the ocean pH; a process commonly known as ocean acidification. The use of satellite Earth Observation has not yet been thoroughly explored as an option for routinely observing surface ocean carbonate chemistry, although its potential has been highlighted. We demonstrate the suitability of using empirical algorithms to calculate total alkalinity (AT) and total dissolved inorganic carbon (CT), assessing the relative performance of satellite, interpolated in situ, and climatology datasets in reproducing the wider spatial patterns of these two variables. Both AT and CT in situ data are reproducible, both regionally and globally, using salinity and temperature datasets, with satellite observed salinity from Aquarius and SMOS providing performance comparable to other datasets for the majority of case studies. Global root mean squared difference (RMSD) between in situ validation data and satellite estimates is 17 μmol kg−1 with bias < 5 μmol kg−1 for AT and 30 μmol kg−1 with bias < 10 μmol kg−1 for CT. This analysis demonstrates that satellite sensors provide a credible solution for monitoring surface synoptic scale AT and CT. It also enables the first demonstration of observation-based synoptic scale AT and CT temporal mixing in the Amazon plume for 2010–2016, complete with a robust estimation of their uncertainty. Article in Journal/Newspaper Ocean acidification Université de Bretagne Occidentale: HAL Remote Sensing of Environment 235 111469
institution Open Polar
collection Université de Bretagne Occidentale: HAL
op_collection_id ftunivbrest
language English
topic [SDU]Sciences of the Universe [physics]
spellingShingle [SDU]Sciences of the Universe [physics]
Land, Peter E.
Findlay, Helen S.
Shutler, Jamie D.
Ashton, Ian
Holding, Thomas
Grouazel, Antoine
Girard-Ardhuin, Fanny
Reul, Nicolas
Piolle, Jean-Francois
Chapron, Bertrand
Quilfen, Yves
Bellerby, Richard G.J.
Bhadury, Punyasloke
Salisbury, Joseph
Vandemark, Douglas
Sabia, Roberto
Optimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengal
topic_facet [SDU]Sciences of the Universe [physics]
description International audience Improving our ability to monitor ocean carbonate chemistry has become a priority as the ocean continues to absorb carbon dioxide from the atmosphere. This long-term uptake is reducing the ocean pH; a process commonly known as ocean acidification. The use of satellite Earth Observation has not yet been thoroughly explored as an option for routinely observing surface ocean carbonate chemistry, although its potential has been highlighted. We demonstrate the suitability of using empirical algorithms to calculate total alkalinity (AT) and total dissolved inorganic carbon (CT), assessing the relative performance of satellite, interpolated in situ, and climatology datasets in reproducing the wider spatial patterns of these two variables. Both AT and CT in situ data are reproducible, both regionally and globally, using salinity and temperature datasets, with satellite observed salinity from Aquarius and SMOS providing performance comparable to other datasets for the majority of case studies. Global root mean squared difference (RMSD) between in situ validation data and satellite estimates is 17 μmol kg−1 with bias < 5 μmol kg−1 for AT and 30 μmol kg−1 with bias < 10 μmol kg−1 for CT. This analysis demonstrates that satellite sensors provide a credible solution for monitoring surface synoptic scale AT and CT. It also enables the first demonstration of observation-based synoptic scale AT and CT temporal mixing in the Amazon plume for 2010–2016, complete with a robust estimation of their uncertainty.
author2 Laboratoire d'Océanographie Physique et Spatiale (LOPS)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
format Article in Journal/Newspaper
author Land, Peter E.
Findlay, Helen S.
Shutler, Jamie D.
Ashton, Ian
Holding, Thomas
Grouazel, Antoine
Girard-Ardhuin, Fanny
Reul, Nicolas
Piolle, Jean-Francois
Chapron, Bertrand
Quilfen, Yves
Bellerby, Richard G.J.
Bhadury, Punyasloke
Salisbury, Joseph
Vandemark, Douglas
Sabia, Roberto
author_facet Land, Peter E.
Findlay, Helen S.
Shutler, Jamie D.
Ashton, Ian
Holding, Thomas
Grouazel, Antoine
Girard-Ardhuin, Fanny
Reul, Nicolas
Piolle, Jean-Francois
Chapron, Bertrand
Quilfen, Yves
Bellerby, Richard G.J.
Bhadury, Punyasloke
Salisbury, Joseph
Vandemark, Douglas
Sabia, Roberto
author_sort Land, Peter E.
title Optimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengal
title_short Optimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengal
title_full Optimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengal
title_fullStr Optimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengal
title_full_unstemmed Optimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the Greater Caribbean, the Amazon Plume and the Bay of Bengal
title_sort optimum satellite remote sensing of the marine carbonate system using empirical algorithms in the global ocean, the greater caribbean, the amazon plume and the bay of bengal
publisher HAL CCSD
publishDate 2019
url https://hal.science/hal-04202447
https://doi.org/10.1016/j.rse.2019.111469
genre Ocean acidification
genre_facet Ocean acidification
op_source ISSN: 0034-4257
EISSN: 1879-0704
Remote Sensing of Environment
https://hal.science/hal-04202447
Remote Sensing of Environment, 2019, 235, 111469 (15p.). &#x27E8;10.1016/j.rse.2019.111469&#x27E9;
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1016/j.rse.2019.111469
hal-04202447
https://hal.science/hal-04202447
doi:10.1016/j.rse.2019.111469
op_doi https://doi.org/10.1016/j.rse.2019.111469
container_title Remote Sensing of Environment
container_volume 235
container_start_page 111469
_version_ 1796317092921737216