Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model

International audience The circulation in the North Atlantic subpolar gyre is complex and strongly influenced by the topography. The gyre dynamics are traditionally understood as the result of a topographic Sverdrup balance, which corresponds to a first-order balance between the planetary vorticity...

Full description

Bibliographic Details
Published in:Ocean Science
Main Authors: Le Corre, Mathieu, Gula, Jonathan, Tréguier, Anne-Marie
Other Authors: Laboratoire d'Océanographie Physique et Spatiale (LOPS), Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), UBO, Region Bretagne through ISblue, Interdisciplinary graduate school for the blue planet ANR-17-EURE-0015, ANR-17-EURE-0015,ISBlue,Interdisciplinary Graduate School for the Blue planet(2017)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-02933376
https://hal.science/hal-02933376/document
https://hal.science/hal-02933376/file/os-16-451-2020.pdf
https://doi.org/10.5194/os-16-451-2020
id ftunivbrest:oai:HAL:hal-02933376v1
record_format openpolar
spelling ftunivbrest:oai:HAL:hal-02933376v1 2024-04-14T08:15:28+00:00 Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model Le Corre, Mathieu Gula, Jonathan Tréguier, Anne-Marie Laboratoire d'Océanographie Physique et Spatiale (LOPS) Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) UBO Region Bretagne through ISblue Interdisciplinary graduate school for the blue planet ANR-17-EURE-0015 ANR-17-EURE-0015,ISBlue,Interdisciplinary Graduate School for the Blue planet(2017) 2020 https://hal.science/hal-02933376 https://hal.science/hal-02933376/document https://hal.science/hal-02933376/file/os-16-451-2020.pdf https://doi.org/10.5194/os-16-451-2020 en eng HAL CCSD European Geosciences Union info:eu-repo/semantics/altIdentifier/doi/10.5194/os-16-451-2020 hal-02933376 https://hal.science/hal-02933376 https://hal.science/hal-02933376/document https://hal.science/hal-02933376/file/os-16-451-2020.pdf doi:10.5194/os-16-451-2020 info:eu-repo/semantics/OpenAccess ISSN: 1812-0784 EISSN: 1812-0792 Ocean Science https://hal.science/hal-02933376 Ocean Science, 2020, 16 (2), pp.451-468. ⟨10.5194/os-16-451-2020⟩ [SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology info:eu-repo/semantics/article Journal articles 2020 ftunivbrest https://doi.org/10.5194/os-16-451-2020 2024-03-21T16:25:52Z International audience The circulation in the North Atlantic subpolar gyre is complex and strongly influenced by the topography. The gyre dynamics are traditionally understood as the result of a topographic Sverdrup balance, which corresponds to a first-order balance between the planetary vorticity advection, the bottom pressure torque, and the wind stress curl. However, these dynamics have been studied mostly with noneddy-resolving models and a crude representation of the bottom topography. Here we revisit the barotropic vorticity balance of the North Atlantic subpolar gyre using a new eddy-resolving simulation (with a grid space of approximate to 2 km) with topography-following vertical coordinates to better represent the mesoscale turbulence and flow-topography interactions. Our findings highlight that, locally, there is a first-order balance between the bottom pressure torque and the nonlinear terms, albeit with a high degree of cancellation between them. However, balances integrated over different regions of the gyre - shelf, slope, and interior - still highlight the important role played by nonlinearities and bottom drag curls. In particular, the Sverdrup balance cannot describe the dynamics in the interior of the gyre. The main sources of cyclonic vorticity are nonlinear terms due to eddies generated along eastern boundary currents and time-mean nonlinear terms in the northwest corner. Our results suggest that a good representation of the mesoscale activity and a good positioning of mean currents are two important conditions for a better representation of the circulation in the North Atlantic subpolar gyre. Article in Journal/Newspaper North Atlantic Université de Bretagne Occidentale: HAL Curl ENVELOPE(-63.071,-63.071,-70.797,-70.797) Ocean Science 16 2 451 468
institution Open Polar
collection Université de Bretagne Occidentale: HAL
op_collection_id ftunivbrest
language English
topic [SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology
spellingShingle [SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology
Le Corre, Mathieu
Gula, Jonathan
Tréguier, Anne-Marie
Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model
topic_facet [SDV.MP]Life Sciences [q-bio]/Microbiology and Parasitology
description International audience The circulation in the North Atlantic subpolar gyre is complex and strongly influenced by the topography. The gyre dynamics are traditionally understood as the result of a topographic Sverdrup balance, which corresponds to a first-order balance between the planetary vorticity advection, the bottom pressure torque, and the wind stress curl. However, these dynamics have been studied mostly with noneddy-resolving models and a crude representation of the bottom topography. Here we revisit the barotropic vorticity balance of the North Atlantic subpolar gyre using a new eddy-resolving simulation (with a grid space of approximate to 2 km) with topography-following vertical coordinates to better represent the mesoscale turbulence and flow-topography interactions. Our findings highlight that, locally, there is a first-order balance between the bottom pressure torque and the nonlinear terms, albeit with a high degree of cancellation between them. However, balances integrated over different regions of the gyre - shelf, slope, and interior - still highlight the important role played by nonlinearities and bottom drag curls. In particular, the Sverdrup balance cannot describe the dynamics in the interior of the gyre. The main sources of cyclonic vorticity are nonlinear terms due to eddies generated along eastern boundary currents and time-mean nonlinear terms in the northwest corner. Our results suggest that a good representation of the mesoscale activity and a good positioning of mean currents are two important conditions for a better representation of the circulation in the North Atlantic subpolar gyre.
author2 Laboratoire d'Océanographie Physique et Spatiale (LOPS)
Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
UBO
Region Bretagne through ISblue
Interdisciplinary graduate school for the blue planet ANR-17-EURE-0015
ANR-17-EURE-0015,ISBlue,Interdisciplinary Graduate School for the Blue planet(2017)
format Article in Journal/Newspaper
author Le Corre, Mathieu
Gula, Jonathan
Tréguier, Anne-Marie
author_facet Le Corre, Mathieu
Gula, Jonathan
Tréguier, Anne-Marie
author_sort Le Corre, Mathieu
title Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model
title_short Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model
title_full Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model
title_fullStr Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model
title_full_unstemmed Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model
title_sort barotropic vorticity balance of the north atlantic subpolar gyre in an eddy-resolving model
publisher HAL CCSD
publishDate 2020
url https://hal.science/hal-02933376
https://hal.science/hal-02933376/document
https://hal.science/hal-02933376/file/os-16-451-2020.pdf
https://doi.org/10.5194/os-16-451-2020
long_lat ENVELOPE(-63.071,-63.071,-70.797,-70.797)
geographic Curl
geographic_facet Curl
genre North Atlantic
genre_facet North Atlantic
op_source ISSN: 1812-0784
EISSN: 1812-0792
Ocean Science
https://hal.science/hal-02933376
Ocean Science, 2020, 16 (2), pp.451-468. ⟨10.5194/os-16-451-2020⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.5194/os-16-451-2020
hal-02933376
https://hal.science/hal-02933376
https://hal.science/hal-02933376/document
https://hal.science/hal-02933376/file/os-16-451-2020.pdf
doi:10.5194/os-16-451-2020
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.5194/os-16-451-2020
container_title Ocean Science
container_volume 16
container_issue 2
container_start_page 451
op_container_end_page 468
_version_ 1796313807055749120