Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean

International audience The most common approach to monitor mysticete acoustic presence is to detect and count their calls in audio records. To implement this method on large datasets, polyvalent and robust automated call detectors are required. Evaluating their performance is essential, to design a...

Full description

Bibliographic Details
Published in:OCEANS 2019 - Marseille
Main Authors: Torterotot, Maëlle, Samaran, Flore, Royer, Jean-Yves
Other Authors: Laboratoire Géosciences Océan (LGO), Université de Bretagne Sud (UBS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS), Lab-STICC_ENSTAB_CID_TOMS, Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC), École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique), Institut Mines-Télécom Paris (IMT)
Format: Conference Object
Language:English
Published: HAL CCSD 2019
Subjects:
Online Access:https://hal.univ-brest.fr/hal-02398789
https://hal.univ-brest.fr/hal-02398789/document
https://hal.univ-brest.fr/hal-02398789/file/PID5916309.pdf
https://doi.org/10.1109/OCEANSE.2019.8867271
id ftunivbrest:oai:HAL:hal-02398789v1
record_format openpolar
spelling ftunivbrest:oai:HAL:hal-02398789v1 2024-02-11T10:02:35+01:00 Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean Torterotot, Maëlle Samaran, Flore Royer, Jean-Yves Laboratoire Géosciences Océan (LGO) Université de Bretagne Sud (UBS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS) Lab-STICC_ENSTAB_CID_TOMS Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC) École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique) Institut Mines-Télécom Paris (IMT) Marseille, France 2019-06 https://hal.univ-brest.fr/hal-02398789 https://hal.univ-brest.fr/hal-02398789/document https://hal.univ-brest.fr/hal-02398789/file/PID5916309.pdf https://doi.org/10.1109/OCEANSE.2019.8867271 en eng HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.1109/OCEANSE.2019.8867271 hal-02398789 https://hal.univ-brest.fr/hal-02398789 https://hal.univ-brest.fr/hal-02398789/document https://hal.univ-brest.fr/hal-02398789/file/PID5916309.pdf doi:10.1109/OCEANSE.2019.8867271 info:eu-repo/semantics/OpenAccess OCEANS 2019 - Marseille OCEANS 2019 MTS/IEEE https://hal.univ-brest.fr/hal-02398789 OCEANS 2019 MTS/IEEE, Jun 2019, Marseille, France. ⟨10.1109/OCEANSE.2019.8867271⟩ Blue whales bioacoustics detection Performance evaluation long term monitoring [SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph] info:eu-repo/semantics/conferenceObject Conference papers 2019 ftunivbrest https://doi.org/10.1109/OCEANSE.2019.8867271 2024-01-16T23:38:40Z International audience The most common approach to monitor mysticete acoustic presence is to detect and count their calls in audio records. To implement this method on large datasets, polyvalent and robust automated call detectors are required. Evaluating their performance is essential, to design a detection strategy adapted to study the available datasets. This assessment then enables accurate post-analyses and comparisons of multiple independent surveys. In this paper, we present the performance of a detector based on dictionaries and sparse representation of the signal to detect blue whale stereotyped and non-stereotyped vocalizations (D-calls) in a larg acoustic database with multiple sites and years of recordings in the southern Indian Ocean. Results show that recall increases with the SNR (Sound to Noise Ratio) and reaches 90% for positive SNR stereotyped calls and between 80% and 90% for high SNR D-calls. A detailed analysis of the influence of dictionary composition, SNR of the calls, manual ground truth as well as interference types and abundance, on the performance variability is presented. Eventually, a detection strategy for long term acoustic monitoring is defined. Conference Object Blue whale Université de Bretagne Occidentale: HAL Indian OCEANS 2019 - Marseille 1 10
institution Open Polar
collection Université de Bretagne Occidentale: HAL
op_collection_id ftunivbrest
language English
topic Blue whales
bioacoustics
detection
Performance evaluation
long term monitoring
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
spellingShingle Blue whales
bioacoustics
detection
Performance evaluation
long term monitoring
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
Torterotot, Maëlle
Samaran, Flore
Royer, Jean-Yves
Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean
topic_facet Blue whales
bioacoustics
detection
Performance evaluation
long term monitoring
[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph]
description International audience The most common approach to monitor mysticete acoustic presence is to detect and count their calls in audio records. To implement this method on large datasets, polyvalent and robust automated call detectors are required. Evaluating their performance is essential, to design a detection strategy adapted to study the available datasets. This assessment then enables accurate post-analyses and comparisons of multiple independent surveys. In this paper, we present the performance of a detector based on dictionaries and sparse representation of the signal to detect blue whale stereotyped and non-stereotyped vocalizations (D-calls) in a larg acoustic database with multiple sites and years of recordings in the southern Indian Ocean. Results show that recall increases with the SNR (Sound to Noise Ratio) and reaches 90% for positive SNR stereotyped calls and between 80% and 90% for high SNR D-calls. A detailed analysis of the influence of dictionary composition, SNR of the calls, manual ground truth as well as interference types and abundance, on the performance variability is presented. Eventually, a detection strategy for long term acoustic monitoring is defined.
author2 Laboratoire Géosciences Océan (LGO)
Université de Bretagne Sud (UBS)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)
Lab-STICC_ENSTAB_CID_TOMS
Laboratoire des sciences et techniques de l'information, de la communication et de la connaissance (Lab-STICC)
École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique)
Institut Mines-Télécom Paris (IMT)-École Nationale d'Ingénieurs de Brest (ENIB)-Université de Bretagne Sud (UBS)-Université de Brest (UBO)-École Nationale Supérieure de Techniques Avancées Bretagne (ENSTA Bretagne)-Institut Mines-Télécom Paris (IMT)-Centre National de la Recherche Scientifique (CNRS)-Université Bretagne Loire (UBL)-IMT Atlantique (IMT Atlantique)
Institut Mines-Télécom Paris (IMT)
format Conference Object
author Torterotot, Maëlle
Samaran, Flore
Royer, Jean-Yves
author_facet Torterotot, Maëlle
Samaran, Flore
Royer, Jean-Yves
author_sort Torterotot, Maëlle
title Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean
title_short Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean
title_full Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean
title_fullStr Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean
title_full_unstemmed Detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the Southern Indian Ocean
title_sort detection strategy for long-term acoustic monitoring of blue whale stereotyped and non-stereotyped calls in the southern indian ocean
publisher HAL CCSD
publishDate 2019
url https://hal.univ-brest.fr/hal-02398789
https://hal.univ-brest.fr/hal-02398789/document
https://hal.univ-brest.fr/hal-02398789/file/PID5916309.pdf
https://doi.org/10.1109/OCEANSE.2019.8867271
op_coverage Marseille, France
geographic Indian
geographic_facet Indian
genre Blue whale
genre_facet Blue whale
op_source OCEANS 2019 - Marseille
OCEANS 2019 MTS/IEEE
https://hal.univ-brest.fr/hal-02398789
OCEANS 2019 MTS/IEEE, Jun 2019, Marseille, France. ⟨10.1109/OCEANSE.2019.8867271⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1109/OCEANSE.2019.8867271
hal-02398789
https://hal.univ-brest.fr/hal-02398789
https://hal.univ-brest.fr/hal-02398789/document
https://hal.univ-brest.fr/hal-02398789/file/PID5916309.pdf
doi:10.1109/OCEANSE.2019.8867271
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1109/OCEANSE.2019.8867271
container_title OCEANS 2019 - Marseille
container_start_page 1
op_container_end_page 10
_version_ 1790598610203705344