Detection and quantification of permafrost change in alpine rock walls and implications for rock instability

The perennial presence of ice in permafrost rock walls alters thermal, hydraulic and mechanic properties of the rock mass. Temperature-related changes in both, rock mechanical properties (compressive and tensile strength of water-saturated rock) and ice mechanical properties (creep, fracture and coh...

Full description

Bibliographic Details
Main Author: Krautblatter, Michael
Other Authors: Dikau, Richard, Haeberli, Willy
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universitäts- und Landesbibliothek Bonn 2010
Subjects:
Ice
Online Access:https://hdl.handle.net/20.500.11811/4117
Description
Summary:The perennial presence of ice in permafrost rock walls alters thermal, hydraulic and mechanic properties of the rock mass. Temperature-related changes in both, rock mechanical properties (compressive and tensile strength of water-saturated rock) and ice mechanical properties (creep, fracture and cohesive properties) account for the internal mechanical destabilisation of permafrost rocks. Two hypothetical ice-/rock mechanical models were developed based on the principle of superposition. Failure along existing sliding planes is explained by the impact of temperature on shear stress uptake by creep deformation of ice, the propensity of failure along rock-ice fractures and reduced total friction along rough rock-rock contacts. This model may account for the rapid response of rockslides to warming (reaction time). In the long term, brittle fracture propagation is initialised. Warming reduces the shear stress uptake by total friction and decreases the critical fracture toughness along rock bridges. The latter model accounts for slow subcritical destabilisation of whole rock slopes over decades to millennia, subsequent to the warming impulse (relaxation time). To gain further understanding of thermal, hydraulic and mechanic properties of permafrost rocks, multidimensional and multi-temporal insights into the system are required. This Ph.D. adopted, modified and calibrated existing ERT (electrical resistivity tomography) techniques for the use in permafrost rocks. Laboratory analysis of electrical properties of eight rock samples from permafrost summits brought upon evidence that the general exponential temperature-resistivity relation, proposed by McGinnis (1973), is not applicable for frozen rocks, due to the effects of freezing in confined space. We found, that separate linear temperature-resistivity (T- ρ) approximation of unfrozen, supercooled and frozen behaviour offers a better explanation of the involved physics. Frozen T-ρ gradients approach 29.8 ±10.6 %/°C while unfrozen gradients were confirmed at 2.9 ±0.3 ...