Exploring Problems in Inorganic Solid-State Systems with Wavefunction-Based Molecular Spectroscopy Methods

The present work explores the possibilities of computational protocols that combine an electrostatic embedding approach to model inorganic crystalline solid-state systems with molecular theory methods for accurate calculation of spectroscopic properties. It highlights the potential of multistep prot...

Full description

Bibliographic Details
Main Author: Dittmer, Anneke
Other Authors: Neese, Frank, Bredow, Thomas
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Universitäts- und Landesbibliothek Bonn 2024
Subjects:
Online Access:https://hdl.handle.net/20.500.11811/11508
id ftunivbonn:oai:bonndoc.ulb.uni-bonn.de:20.500.11811/11508
record_format openpolar
spelling ftunivbonn:oai:bonndoc.ulb.uni-bonn.de:20.500.11811/11508 2024-05-19T07:46:48+00:00 Exploring Problems in Inorganic Solid-State Systems with Wavefunction-Based Molecular Spectroscopy Methods Dittmer, Anneke Neese, Frank Bredow, Thomas 2024-04-23 application/pdf https://hdl.handle.net/20.500.11811/11508 eng eng Universitäts- und Landesbibliothek Bonn info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.48565/bonndoc-272 info:eu-repo/semantics/altIdentifier/urn/urn:nbn:de:hbz:5-75689 info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.inorgchem.9b00994 https://hdl.handle.net/20.500.11811/11508 In Copyright http://rightsstatements.org/vocab/InC/1.0/ openAccess Ionic-Crystal-QM/MM electrostatic embedding schemes solid-state spectroscopy theoretical spectroscopy band gaps X-Ray emission spectroscopy solid-state NMR ddc:540 doc-type:doctoralThesis 2024 ftunivbonn https://doi.org/20.500.11811/1150810.48565/bonndoc-27210.1021/acs.inorgchem.9b00994 2024-04-28T23:54:02Z The present work explores the possibilities of computational protocols that combine an electrostatic embedding approach to model inorganic crystalline solid-state systems with molecular theory methods for accurate calculation of spectroscopic properties. It highlights the potential of multistep protocols that combine methods ranging from DFT to single- and multireference wavefunction-based methods to explore and understand spectroscopic observations at the theoretical level. A generalized protocol for modeling bulk properties of inorganic solid-state systems using an electrostatic embedding approach within the ORCA program suite is presented. The protocol involves applying a quantum mechanical method to a specific quantum cluster that represents a part of a solid-state system. The quantum cluster is embedded in a point charge field that accounts for the long-range electrostatic effects of the solid-state system. This approach allows the quantum cluster to operate as if it were in the bulk of a solid-state system. In particular, a newly developed automated electrostatic embedding approach within the QM/MM framework in ORCA, called Ionic-Crystal-QM/MM, is presented. Two benchmark studies are performed to evaluate the applicability of the electrostatic embedding approach and molecular methods for the calculation of bulk properties of inorganic solid-state systems. The first study focuses on the calculation of NMR nuclear shielding constants using DFT functionals and MP2. The second study investigates the calculation of band gaps using TD-DFT with a variety of DFT functionals and bt-PNO-STEOM-CCSD. Both studies show that the electrostatic embedding approach gives robust results as long as the quantum cluster is carefully embedded in a sufficiently large and charge-optimized point charge field and the quantum cluster itself is converged with respect to the desired property. When this is the case, the molecular methods can obtain the calculated bulk properties with an accuracy comparable to that expected for the ... Doctoral or Postdoctoral Thesis Orca bonndoc - The Repository of the University of Bonn
institution Open Polar
collection bonndoc - The Repository of the University of Bonn
op_collection_id ftunivbonn
language English
topic Ionic-Crystal-QM/MM
electrostatic embedding schemes
solid-state spectroscopy
theoretical spectroscopy
band gaps
X-Ray emission spectroscopy
solid-state NMR
ddc:540
spellingShingle Ionic-Crystal-QM/MM
electrostatic embedding schemes
solid-state spectroscopy
theoretical spectroscopy
band gaps
X-Ray emission spectroscopy
solid-state NMR
ddc:540
Dittmer, Anneke
Exploring Problems in Inorganic Solid-State Systems with Wavefunction-Based Molecular Spectroscopy Methods
topic_facet Ionic-Crystal-QM/MM
electrostatic embedding schemes
solid-state spectroscopy
theoretical spectroscopy
band gaps
X-Ray emission spectroscopy
solid-state NMR
ddc:540
description The present work explores the possibilities of computational protocols that combine an electrostatic embedding approach to model inorganic crystalline solid-state systems with molecular theory methods for accurate calculation of spectroscopic properties. It highlights the potential of multistep protocols that combine methods ranging from DFT to single- and multireference wavefunction-based methods to explore and understand spectroscopic observations at the theoretical level. A generalized protocol for modeling bulk properties of inorganic solid-state systems using an electrostatic embedding approach within the ORCA program suite is presented. The protocol involves applying a quantum mechanical method to a specific quantum cluster that represents a part of a solid-state system. The quantum cluster is embedded in a point charge field that accounts for the long-range electrostatic effects of the solid-state system. This approach allows the quantum cluster to operate as if it were in the bulk of a solid-state system. In particular, a newly developed automated electrostatic embedding approach within the QM/MM framework in ORCA, called Ionic-Crystal-QM/MM, is presented. Two benchmark studies are performed to evaluate the applicability of the electrostatic embedding approach and molecular methods for the calculation of bulk properties of inorganic solid-state systems. The first study focuses on the calculation of NMR nuclear shielding constants using DFT functionals and MP2. The second study investigates the calculation of band gaps using TD-DFT with a variety of DFT functionals and bt-PNO-STEOM-CCSD. Both studies show that the electrostatic embedding approach gives robust results as long as the quantum cluster is carefully embedded in a sufficiently large and charge-optimized point charge field and the quantum cluster itself is converged with respect to the desired property. When this is the case, the molecular methods can obtain the calculated bulk properties with an accuracy comparable to that expected for the ...
author2 Neese, Frank
Bredow, Thomas
format Doctoral or Postdoctoral Thesis
author Dittmer, Anneke
author_facet Dittmer, Anneke
author_sort Dittmer, Anneke
title Exploring Problems in Inorganic Solid-State Systems with Wavefunction-Based Molecular Spectroscopy Methods
title_short Exploring Problems in Inorganic Solid-State Systems with Wavefunction-Based Molecular Spectroscopy Methods
title_full Exploring Problems in Inorganic Solid-State Systems with Wavefunction-Based Molecular Spectroscopy Methods
title_fullStr Exploring Problems in Inorganic Solid-State Systems with Wavefunction-Based Molecular Spectroscopy Methods
title_full_unstemmed Exploring Problems in Inorganic Solid-State Systems with Wavefunction-Based Molecular Spectroscopy Methods
title_sort exploring problems in inorganic solid-state systems with wavefunction-based molecular spectroscopy methods
publisher Universitäts- und Landesbibliothek Bonn
publishDate 2024
url https://hdl.handle.net/20.500.11811/11508
genre Orca
genre_facet Orca
op_relation info:eu-repo/semantics/altIdentifier/doi/https://doi.org/10.48565/bonndoc-272
info:eu-repo/semantics/altIdentifier/urn/urn:nbn:de:hbz:5-75689
info:eu-repo/semantics/altIdentifier/doi/10.1021/acs.inorgchem.9b00994
https://hdl.handle.net/20.500.11811/11508
op_rights In Copyright
http://rightsstatements.org/vocab/InC/1.0/
openAccess
op_doi https://doi.org/20.500.11811/1150810.48565/bonndoc-27210.1021/acs.inorgchem.9b00994
_version_ 1799487047421919232