Studio di fenomeni d'instabilità gravitativa sui fondali marini, con particolare riferimento all'isola di Stromboli

In the last decade the interest for submarine instability grew up, driven by the increasing exploitation of natural resources (primary hydrocarbons), the emplacement of bottom-lying structures (cables and pipelines) and by the development of coastal areas, whose infrastructures increasingly protrude...

Full description

Bibliographic Details
Main Author: Casalbore, Daniele <1979>
Other Authors: Romagnoli, Claudia
Format: Doctoral or Postdoctoral Thesis
Language:Italian
Published: Alma Mater Studiorum - Università di Bologna 2009
Subjects:
Online Access:http://amsdottorato.unibo.it/2163/
http://amsdottorato.unibo.it/2163/1/Casalbore_Daniele_tesi.pdf
id ftunivbologntesi:oai:amsdottorato.cib.unibo.it:2163
record_format openpolar
institution Open Polar
collection Università di Bologna: AMS Tesi di Dottorato (Alm@DL)
op_collection_id ftunivbologntesi
language Italian
topic GEO/02 Geologia stratigrafica e sedimentologica
spellingShingle GEO/02 Geologia stratigrafica e sedimentologica
Casalbore, Daniele <1979>
Studio di fenomeni d'instabilità gravitativa sui fondali marini, con particolare riferimento all'isola di Stromboli
topic_facet GEO/02 Geologia stratigrafica e sedimentologica
description In the last decade the interest for submarine instability grew up, driven by the increasing exploitation of natural resources (primary hydrocarbons), the emplacement of bottom-lying structures (cables and pipelines) and by the development of coastal areas, whose infrastructures increasingly protrude to the sea. The great interest for this topic promoted a number of international projects such as: STEAM (Sediment Transport on European Atlantic Margins, 93-96), ENAM II (European North Atlantic Margin, 96-99), GITEC (Genesis and Impact of Tsunamis on the European Coast 92-95), STRATAFORM (STRATA FORmation on Margins, 95-01), Seabed Slope Process in Deep Water Continental Margin (Northwest Gulf of Mexico, 96-04), COSTA (Continental slope Stability, 00-05), EUROMARGINS (Slope Stability on Europe’s Passive Continental Margin), SPACOMA (04-07), EUROSTRATAFORM (European Margin Strata Formation), NGI's internal project SIP-8 (Offshore Geohazards), IGCP-511: Submarine Mass Movements and Their Consequences (05-09) and projects indirectly related to instability processes, such as TRANSFER (Tsunami Risk ANd Strategies For the European region, 06-09) or NEAREST (integrated observations from NEAR shore sourcES of Tsunamis: towards an early warning system, 06-09). In Italy, apart from a national project realized within the activities of the National Group of Volcanology during the framework 2000-2003 “Conoscenza delle parti sommerse dei vulcani italiani e valutazione del potenziale rischio vulcanico”, the study of submarine mass-movement has been underestimated until the occurrence of the landslide-tsunami events that affected Stromboli on December 30, 2002. This event made the Italian Institutions and the scientific community more aware of the hazard related to submarine landslides, mainly in light of the growing anthropization of coastal sectors, that increases the vulnerability of these areas to the consequences of such processes. In this regard, two important national projects have been recently funded in order to study coastal instabilities (PRIN 24, 06-08) and to map the main submarine hazard features on continental shelves and upper slopes around the most part of Italian coast (MaGIC Project). The study realized in this Thesis is addressed to the understanding of these processes, with particular reference to Stromboli submerged flanks. These latter represent a natural laboratory in this regard, as several kind of instability phenomena are present on the submerged flanks, affecting about 90% of the entire submerged areal and often (strongly) influencing the morphological evolution of subaerial slopes, as witnessed by the event occurred on 30 December 2002. Furthermore, each phenomenon is characterized by different pre-failure, failure and post-failure mechanisms, ranging from rock-falls, to turbidity currents up to catastrophic sector collapses. The Thesis is divided into three introductive chapters, regarding a brief review of submarine instability phenomena and related hazard (cap. 1), a “bird’s-eye” view on methodologies and available dataset (cap. 2) and a short introduction on the evolution and the morpho-structural setting of the Stromboli edifice (cap. 3). This latter seems to play a major role in the development of largescale sector collapses at Stromboli, as they occurred perpendicular to the orientation of the main volcanic rift axis (oriented in NE-SW direction). The characterization of these events and their relationships with successive erosive-depositional processes represents the main focus of cap.4 (Offshore evidence of large-scale lateral collapses on the eastern flank of Stromboli, Italy, due to structurally-controlled, bilateral flank instability) and cap. 5 (Lateral collapses and active sedimentary processes on the North-western flank of Stromboli Volcano), represented by articles accepted for publication on international papers (Marine Geology). Moreover, these studies highlight the hazard related to these catastrophic events; several calamities (with more than 40000 casualties only in the last two century) have been, in fact, the direct or indirect result of landslides affecting volcanic flanks, as observed at Oshima-Oshima (1741) and Unzen Volcano (1792) in Japan (Satake&Kato, 2001; Brantley&Scott, 1993), Krakatau (1883) in Indonesia (Self&Rampino, 1981), Ritter Island (1888), Sissano in Papua New Guinea (Ward& Day, 2003; Johnson, 1987; Tappin et al., 2001) and Mt St. Augustine (1883) in Alaska (Beget& Kienle, 1992). Flank landslide are also recognized as the most important and efficient mass-wasting process on volcanoes, contributing to the development of the edifices by widening their base and to the growth of a volcaniclastic apron at the foot of a volcano; a number of small and medium-scale erosive processes are also responsible for the carving of Stromboli submarine flanks and the transport of debris towards the deeper areas. The characterization of features associated to these processes is the main focus of cap. 6; it is also important to highlight that some small-scale events are able to create damage to coastal areas, as also witnessed by recent events of Gioia Tauro 1978, Nizza, 1979 and Stromboli 2002. The hazard potential related to these phenomena is, in fact, very high, as they commonly occur at higher frequency with respect to large-scale collapses, therefore being more significant in terms of human timescales. In the last chapter (cap. 7), a brief review and discussion of instability processes identified on Stromboli submerged flanks is presented; they are also compared with respect to analogous processes recognized in other submerged areas in order to shed lights on the main factors involved in their development. Finally, some applications of multibeam data to assess the hazard related to these phenomena are also discussed.
author2 Romagnoli, Claudia
format Doctoral or Postdoctoral Thesis
author Casalbore, Daniele <1979>
author_facet Casalbore, Daniele <1979>
author_sort Casalbore, Daniele <1979>
title Studio di fenomeni d'instabilità gravitativa sui fondali marini, con particolare riferimento all'isola di Stromboli
title_short Studio di fenomeni d'instabilità gravitativa sui fondali marini, con particolare riferimento all'isola di Stromboli
title_full Studio di fenomeni d'instabilità gravitativa sui fondali marini, con particolare riferimento all'isola di Stromboli
title_fullStr Studio di fenomeni d'instabilità gravitativa sui fondali marini, con particolare riferimento all'isola di Stromboli
title_full_unstemmed Studio di fenomeni d'instabilità gravitativa sui fondali marini, con particolare riferimento all'isola di Stromboli
title_sort studio di fenomeni d'instabilità gravitativa sui fondali marini, con particolare riferimento all'isola di stromboli
publisher Alma Mater Studiorum - Università di Bologna
publishDate 2009
url http://amsdottorato.unibo.it/2163/
http://amsdottorato.unibo.it/2163/1/Casalbore_Daniele_tesi.pdf
genre North Atlantic
Alaska
genre_facet North Atlantic
Alaska
op_relation http://amsdottorato.unibo.it/2163/1/Casalbore_Daniele_tesi.pdf
urn:nbn:it:unibo-1705
Casalbore, Daniele (2009) Studio di fenomeni d'instabilità gravitativa sui fondali marini, con particolare riferimento all'isola di Stromboli, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze della terra <http://amsdottorato.unibo.it/view/dottorati/DOT300/>, 21 Ciclo. DOI 10.6092/unibo/amsdottorato/2163.
op_rights info:eu-repo/semantics/openAccess
_version_ 1766137575079149568
spelling ftunivbologntesi:oai:amsdottorato.cib.unibo.it:2163 2023-05-15T17:37:34+02:00 Studio di fenomeni d'instabilità gravitativa sui fondali marini, con particolare riferimento all'isola di Stromboli Casalbore, Daniele <1979> Romagnoli, Claudia 2009-04-06 application/pdf http://amsdottorato.unibo.it/2163/ http://amsdottorato.unibo.it/2163/1/Casalbore_Daniele_tesi.pdf it ita Alma Mater Studiorum - Università di Bologna http://amsdottorato.unibo.it/2163/1/Casalbore_Daniele_tesi.pdf urn:nbn:it:unibo-1705 Casalbore, Daniele (2009) Studio di fenomeni d'instabilità gravitativa sui fondali marini, con particolare riferimento all'isola di Stromboli, [Dissertation thesis], Alma Mater Studiorum Università di Bologna. Dottorato di ricerca in Scienze della terra <http://amsdottorato.unibo.it/view/dottorati/DOT300/>, 21 Ciclo. DOI 10.6092/unibo/amsdottorato/2163. info:eu-repo/semantics/openAccess GEO/02 Geologia stratigrafica e sedimentologica Doctoral Thesis PeerReviewed 2009 ftunivbologntesi 2021-06-03T13:37:29Z In the last decade the interest for submarine instability grew up, driven by the increasing exploitation of natural resources (primary hydrocarbons), the emplacement of bottom-lying structures (cables and pipelines) and by the development of coastal areas, whose infrastructures increasingly protrude to the sea. The great interest for this topic promoted a number of international projects such as: STEAM (Sediment Transport on European Atlantic Margins, 93-96), ENAM II (European North Atlantic Margin, 96-99), GITEC (Genesis and Impact of Tsunamis on the European Coast 92-95), STRATAFORM (STRATA FORmation on Margins, 95-01), Seabed Slope Process in Deep Water Continental Margin (Northwest Gulf of Mexico, 96-04), COSTA (Continental slope Stability, 00-05), EUROMARGINS (Slope Stability on Europe’s Passive Continental Margin), SPACOMA (04-07), EUROSTRATAFORM (European Margin Strata Formation), NGI's internal project SIP-8 (Offshore Geohazards), IGCP-511: Submarine Mass Movements and Their Consequences (05-09) and projects indirectly related to instability processes, such as TRANSFER (Tsunami Risk ANd Strategies For the European region, 06-09) or NEAREST (integrated observations from NEAR shore sourcES of Tsunamis: towards an early warning system, 06-09). In Italy, apart from a national project realized within the activities of the National Group of Volcanology during the framework 2000-2003 “Conoscenza delle parti sommerse dei vulcani italiani e valutazione del potenziale rischio vulcanico”, the study of submarine mass-movement has been underestimated until the occurrence of the landslide-tsunami events that affected Stromboli on December 30, 2002. This event made the Italian Institutions and the scientific community more aware of the hazard related to submarine landslides, mainly in light of the growing anthropization of coastal sectors, that increases the vulnerability of these areas to the consequences of such processes. In this regard, two important national projects have been recently funded in order to study coastal instabilities (PRIN 24, 06-08) and to map the main submarine hazard features on continental shelves and upper slopes around the most part of Italian coast (MaGIC Project). The study realized in this Thesis is addressed to the understanding of these processes, with particular reference to Stromboli submerged flanks. These latter represent a natural laboratory in this regard, as several kind of instability phenomena are present on the submerged flanks, affecting about 90% of the entire submerged areal and often (strongly) influencing the morphological evolution of subaerial slopes, as witnessed by the event occurred on 30 December 2002. Furthermore, each phenomenon is characterized by different pre-failure, failure and post-failure mechanisms, ranging from rock-falls, to turbidity currents up to catastrophic sector collapses. The Thesis is divided into three introductive chapters, regarding a brief review of submarine instability phenomena and related hazard (cap. 1), a “bird’s-eye” view on methodologies and available dataset (cap. 2) and a short introduction on the evolution and the morpho-structural setting of the Stromboli edifice (cap. 3). This latter seems to play a major role in the development of largescale sector collapses at Stromboli, as they occurred perpendicular to the orientation of the main volcanic rift axis (oriented in NE-SW direction). The characterization of these events and their relationships with successive erosive-depositional processes represents the main focus of cap.4 (Offshore evidence of large-scale lateral collapses on the eastern flank of Stromboli, Italy, due to structurally-controlled, bilateral flank instability) and cap. 5 (Lateral collapses and active sedimentary processes on the North-western flank of Stromboli Volcano), represented by articles accepted for publication on international papers (Marine Geology). Moreover, these studies highlight the hazard related to these catastrophic events; several calamities (with more than 40000 casualties only in the last two century) have been, in fact, the direct or indirect result of landslides affecting volcanic flanks, as observed at Oshima-Oshima (1741) and Unzen Volcano (1792) in Japan (Satake&Kato, 2001; Brantley&Scott, 1993), Krakatau (1883) in Indonesia (Self&Rampino, 1981), Ritter Island (1888), Sissano in Papua New Guinea (Ward& Day, 2003; Johnson, 1987; Tappin et al., 2001) and Mt St. Augustine (1883) in Alaska (Beget& Kienle, 1992). Flank landslide are also recognized as the most important and efficient mass-wasting process on volcanoes, contributing to the development of the edifices by widening their base and to the growth of a volcaniclastic apron at the foot of a volcano; a number of small and medium-scale erosive processes are also responsible for the carving of Stromboli submarine flanks and the transport of debris towards the deeper areas. The characterization of features associated to these processes is the main focus of cap. 6; it is also important to highlight that some small-scale events are able to create damage to coastal areas, as also witnessed by recent events of Gioia Tauro 1978, Nizza, 1979 and Stromboli 2002. The hazard potential related to these phenomena is, in fact, very high, as they commonly occur at higher frequency with respect to large-scale collapses, therefore being more significant in terms of human timescales. In the last chapter (cap. 7), a brief review and discussion of instability processes identified on Stromboli submerged flanks is presented; they are also compared with respect to analogous processes recognized in other submerged areas in order to shed lights on the main factors involved in their development. Finally, some applications of multibeam data to assess the hazard related to these phenomena are also discussed. Doctoral or Postdoctoral Thesis North Atlantic Alaska Università di Bologna: AMS Tesi di Dottorato (Alm@DL)