CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core
CO2 ice-core records show an increase in the atmospheric concentration of 80–100 parts per million by volume (ppmv) from the last glacial maximum (LGM) to the early Holocene. We present CO2 measurements performed on an ice core from central Greenland, drilled during the Greenland Ice Core Project (G...
Published in: | Journal of Geophysical Research: Oceans |
---|---|
Main Authors: | , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
American Geophysical Union
1997
|
Subjects: | |
Online Access: | https://boris.unibe.ch/158726/1/anklin97jgr.pdf https://boris.unibe.ch/158726/ |
id |
ftunivbern:oai:boris.unibe.ch:158726 |
---|---|
record_format |
openpolar |
spelling |
ftunivbern:oai:boris.unibe.ch:158726 2024-02-11T09:57:09+01:00 CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core Anklin, M. Schwander, J. Stauffer, B. Tschumi, J. Fuchs, A. Barnola, J.M. Raynaud, D. 1997 application/pdf https://boris.unibe.ch/158726/1/anklin97jgr.pdf https://boris.unibe.ch/158726/ eng eng American Geophysical Union https://boris.unibe.ch/158726/ info:eu-repo/semantics/openAccess Anklin, M.; Schwander, J.; Stauffer, B.; Tschumi, J.; Fuchs, A.; Barnola, J.M.; Raynaud, D. (1997). CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core. Journal of Geophysical Research: Oceans, 102(C12), pp. 26539-26545. American Geophysical Union 10.1029/97JC00182 <http://dx.doi.org/10.1029/97JC00182> 530 Physics info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed 1997 ftunivbern https://doi.org/10.1029/97JC00182 2024-01-22T00:50:32Z CO2 ice-core records show an increase in the atmospheric concentration of 80–100 parts per million by volume (ppmv) from the last glacial maximum (LGM) to the early Holocene. We present CO2 measurements performed on an ice core from central Greenland, drilled during the Greenland Ice Core Project (GRIP). This CO2 profile from GRIP confirms the most prominent CO2 increase from the LGM, with a mean concentration of 200 ppmv, to the early Holocene with concentrations between 290 and 310 ppmv. Some structures of the new CO2 record are similar to those previously obtained from the Dye 3 ice core (Greenland), which indicated a dilemma between Greenland and Antarctic CO2 records [Oeschger et al., 1988]. Both Greenland cores show high CO2 values for rather mild climatic periods during the last glaciation, whereas CO2 records from Antarctica do not show such high CO2 variations during the glaciation and, furthermore, the CO2 values in the early Holocene are about 20–30 ppmv higher in the GRIP record than in Antarctic records. There is some evidence that the difference could be due to chemical reactions between impurities in the ice leading to an increase of the CO2 concentration under certain conditions. If in situ processes can change the CO2 concentration in the air bubbles, the question arises about how reliably do CO2 records from ice cores reflect the atmospheric composition at the time of ice formation. The discrepancies between the CO2 profiles from Greenland and Antarctica can be explained by in situ production of excess CO2 due to interactions between carbonate and acidic species. Since the carbonate concentration in Antarctic ice is much lower than in Greenland ice, CO2 records from Antarctica are much less affected by such in situ-produced CO2. Article in Journal/Newspaper Antarc* Antarctic Antarctica Dye 3 Dye-3 Greenland Greenland ice core Greenland Ice core Project GRIP ice core BORIS (Bern Open Repository and Information System, University of Bern) Antarctic Greenland Journal of Geophysical Research: Oceans 102 C12 26539 26545 |
institution |
Open Polar |
collection |
BORIS (Bern Open Repository and Information System, University of Bern) |
op_collection_id |
ftunivbern |
language |
English |
topic |
530 Physics |
spellingShingle |
530 Physics Anklin, M. Schwander, J. Stauffer, B. Tschumi, J. Fuchs, A. Barnola, J.M. Raynaud, D. CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core |
topic_facet |
530 Physics |
description |
CO2 ice-core records show an increase in the atmospheric concentration of 80–100 parts per million by volume (ppmv) from the last glacial maximum (LGM) to the early Holocene. We present CO2 measurements performed on an ice core from central Greenland, drilled during the Greenland Ice Core Project (GRIP). This CO2 profile from GRIP confirms the most prominent CO2 increase from the LGM, with a mean concentration of 200 ppmv, to the early Holocene with concentrations between 290 and 310 ppmv. Some structures of the new CO2 record are similar to those previously obtained from the Dye 3 ice core (Greenland), which indicated a dilemma between Greenland and Antarctic CO2 records [Oeschger et al., 1988]. Both Greenland cores show high CO2 values for rather mild climatic periods during the last glaciation, whereas CO2 records from Antarctica do not show such high CO2 variations during the glaciation and, furthermore, the CO2 values in the early Holocene are about 20–30 ppmv higher in the GRIP record than in Antarctic records. There is some evidence that the difference could be due to chemical reactions between impurities in the ice leading to an increase of the CO2 concentration under certain conditions. If in situ processes can change the CO2 concentration in the air bubbles, the question arises about how reliably do CO2 records from ice cores reflect the atmospheric composition at the time of ice formation. The discrepancies between the CO2 profiles from Greenland and Antarctica can be explained by in situ production of excess CO2 due to interactions between carbonate and acidic species. Since the carbonate concentration in Antarctic ice is much lower than in Greenland ice, CO2 records from Antarctica are much less affected by such in situ-produced CO2. |
format |
Article in Journal/Newspaper |
author |
Anklin, M. Schwander, J. Stauffer, B. Tschumi, J. Fuchs, A. Barnola, J.M. Raynaud, D. |
author_facet |
Anklin, M. Schwander, J. Stauffer, B. Tschumi, J. Fuchs, A. Barnola, J.M. Raynaud, D. |
author_sort |
Anklin, M. |
title |
CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core |
title_short |
CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core |
title_full |
CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core |
title_fullStr |
CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core |
title_full_unstemmed |
CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core |
title_sort |
co2 record between 40 and 8 kyr b.p. from the greenland ice core project ice core |
publisher |
American Geophysical Union |
publishDate |
1997 |
url |
https://boris.unibe.ch/158726/1/anklin97jgr.pdf https://boris.unibe.ch/158726/ |
geographic |
Antarctic Greenland |
geographic_facet |
Antarctic Greenland |
genre |
Antarc* Antarctic Antarctica Dye 3 Dye-3 Greenland Greenland ice core Greenland Ice core Project GRIP ice core |
genre_facet |
Antarc* Antarctic Antarctica Dye 3 Dye-3 Greenland Greenland ice core Greenland Ice core Project GRIP ice core |
op_source |
Anklin, M.; Schwander, J.; Stauffer, B.; Tschumi, J.; Fuchs, A.; Barnola, J.M.; Raynaud, D. (1997). CO2 record between 40 and 8 kyr B.P. from the Greenland Ice Core Project ice core. Journal of Geophysical Research: Oceans, 102(C12), pp. 26539-26545. American Geophysical Union 10.1029/97JC00182 <http://dx.doi.org/10.1029/97JC00182> |
op_relation |
https://boris.unibe.ch/158726/ |
op_rights |
info:eu-repo/semantics/openAccess |
op_doi |
https://doi.org/10.1029/97JC00182 |
container_title |
Journal of Geophysical Research: Oceans |
container_volume |
102 |
container_issue |
C12 |
container_start_page |
26539 |
op_container_end_page |
26545 |
_version_ |
1790608993425555456 |