Time-variable gravity field recovery from reprocessed GOCE precise science orbits

The satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) observed the Earth's gravity field between November 2009 and October 2013 with an unprecedented accuracy and a high spatial resolution. While the core instrument for gravity field measurements was a three-axi...

Full description

Bibliographic Details
Main Authors: Grombein, Thomas, Arnold, Daniel, Jäggi, Adrian
Format: Conference Object
Language:English
Published: 2021
Subjects:
Online Access:https://boris.unibe.ch/152967/1/COSPAR_2021_TG.pdf
https://boris.unibe.ch/152967/
id ftunivbern:oai:boris.unibe.ch:152967
record_format openpolar
spelling ftunivbern:oai:boris.unibe.ch:152967 2023-08-20T04:00:31+02:00 Time-variable gravity field recovery from reprocessed GOCE precise science orbits Grombein, Thomas Arnold, Daniel Jäggi, Adrian 2021 application/pdf https://boris.unibe.ch/152967/1/COSPAR_2021_TG.pdf https://boris.unibe.ch/152967/ eng eng https://boris.unibe.ch/152967/ info:eu-repo/semantics/openAccess Grombein, Thomas; Arnold, Daniel; Jäggi, Adrian (2021). Time-variable gravity field recovery from reprocessed GOCE precise science orbits (Unpublished). In: 43th COSPAR Scientific Assembly. Sydney, Australia (online). January 28 - February 4, 2021. 520 Astronomy info:eu-repo/semantics/conferenceObject info:eu-repo/semantics/draft NonPeerReviewed 2021 ftunivbern 2023-07-31T22:05:14Z The satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) observed the Earth's gravity field between November 2009 and October 2013 with an unprecedented accuracy and a high spatial resolution. While the core instrument for gravity field measurements was a three-axis gravity gradiometer, two dual-frequency GPS receivers were used as primary instruments for orbit and low-degree gravity field determination. In this presentation, we focus on the capability to recover time-variable gravity field signals from the collected GOCE GPS data. For this purpose, we use the GPS-based kinematic positions of the reprocessed GOCE precise science orbits (PSOs) that have been computed at the Astronomical Institute of the University of Bern (AIUB) in the framework of the GOCE reprocessing campaign. Using these kinematic positions as pseudo-observations for gravity field recovery with the celestial mechanics approach, we estimate spherical harmonic coefficients of the Earthâ?Ts (static) gravity field up to degree and order (d/o) 120, and simultaneously solve for trends and annual periodic signals of the time-variable gravity field up to d/o 10. As shown by previous studies, gravity field determinations based on the reprocessed GOCE PSOs provide a substantially improved quality for the lower spherical harmonic degrees compared to those derived from the operational PSOs that suffer from ionosphere-induced artifacts along the geomagnetic equator. We demonstrate that (1) the use of the reprocessed GOCE PSOs, and (2) the inclusion of the GOCE common-mode accelerometer data as part of the force model, are crucial to exploit the full potential of the time-variable gravity field signal captured by the GOCE satellite. Although the GOCE GPS data cover only a relatively short time period of about four years, our analyses show that it is possible to recover the major time-variable signals, for example in Greenland and Antarctica. To assess the quality of the estimated trends and annual periodic signals, we compare ... Conference Object Antarc* Antarctica Greenland BORIS (Bern Open Repository and Information System, University of Bern) Greenland
institution Open Polar
collection BORIS (Bern Open Repository and Information System, University of Bern)
op_collection_id ftunivbern
language English
topic 520 Astronomy
spellingShingle 520 Astronomy
Grombein, Thomas
Arnold, Daniel
Jäggi, Adrian
Time-variable gravity field recovery from reprocessed GOCE precise science orbits
topic_facet 520 Astronomy
description The satellite mission GOCE (Gravity Field and Steady-State Ocean Circulation Explorer) observed the Earth's gravity field between November 2009 and October 2013 with an unprecedented accuracy and a high spatial resolution. While the core instrument for gravity field measurements was a three-axis gravity gradiometer, two dual-frequency GPS receivers were used as primary instruments for orbit and low-degree gravity field determination. In this presentation, we focus on the capability to recover time-variable gravity field signals from the collected GOCE GPS data. For this purpose, we use the GPS-based kinematic positions of the reprocessed GOCE precise science orbits (PSOs) that have been computed at the Astronomical Institute of the University of Bern (AIUB) in the framework of the GOCE reprocessing campaign. Using these kinematic positions as pseudo-observations for gravity field recovery with the celestial mechanics approach, we estimate spherical harmonic coefficients of the Earthâ?Ts (static) gravity field up to degree and order (d/o) 120, and simultaneously solve for trends and annual periodic signals of the time-variable gravity field up to d/o 10. As shown by previous studies, gravity field determinations based on the reprocessed GOCE PSOs provide a substantially improved quality for the lower spherical harmonic degrees compared to those derived from the operational PSOs that suffer from ionosphere-induced artifacts along the geomagnetic equator. We demonstrate that (1) the use of the reprocessed GOCE PSOs, and (2) the inclusion of the GOCE common-mode accelerometer data as part of the force model, are crucial to exploit the full potential of the time-variable gravity field signal captured by the GOCE satellite. Although the GOCE GPS data cover only a relatively short time period of about four years, our analyses show that it is possible to recover the major time-variable signals, for example in Greenland and Antarctica. To assess the quality of the estimated trends and annual periodic signals, we compare ...
format Conference Object
author Grombein, Thomas
Arnold, Daniel
Jäggi, Adrian
author_facet Grombein, Thomas
Arnold, Daniel
Jäggi, Adrian
author_sort Grombein, Thomas
title Time-variable gravity field recovery from reprocessed GOCE precise science orbits
title_short Time-variable gravity field recovery from reprocessed GOCE precise science orbits
title_full Time-variable gravity field recovery from reprocessed GOCE precise science orbits
title_fullStr Time-variable gravity field recovery from reprocessed GOCE precise science orbits
title_full_unstemmed Time-variable gravity field recovery from reprocessed GOCE precise science orbits
title_sort time-variable gravity field recovery from reprocessed goce precise science orbits
publishDate 2021
url https://boris.unibe.ch/152967/1/COSPAR_2021_TG.pdf
https://boris.unibe.ch/152967/
geographic Greenland
geographic_facet Greenland
genre Antarc*
Antarctica
Greenland
genre_facet Antarc*
Antarctica
Greenland
op_source Grombein, Thomas; Arnold, Daniel; Jäggi, Adrian (2021). Time-variable gravity field recovery from reprocessed GOCE precise science orbits (Unpublished). In: 43th COSPAR Scientific Assembly. Sydney, Australia (online). January 28 - February 4, 2021.
op_relation https://boris.unibe.ch/152967/
op_rights info:eu-repo/semantics/openAccess
_version_ 1774718627206922240