Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study

Atmospheric CO₂ was ~90 ppmv lower at the Last Glacial Maximum (LGM) compared to the late Holocene, but the mechanisms responsible for this change remain elusive. Here we employ a carbon isotope-enabled Earth System Model to investigate the role of ocean circulation in setting the LGM oceanic δ¹³C d...

Full description

Bibliographic Details
Published in:Paleoceanography
Main Authors: Menviel, L., Yu, J., Joos, Fortunat, Mouchet, A., Meissner, K. J., England, M. H.
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2017
Subjects:
Online Access:https://boris.unibe.ch/100806/1/Menviel_et_al-2017-Paleoceanography.pdf
https://boris.unibe.ch/100806/
http://onlinelibrary.wiley.com/doi/10.1002/2016PA003024/abstract
id ftunivbern:oai:boris.unibe.ch:100806
record_format openpolar
spelling ftunivbern:oai:boris.unibe.ch:100806 2023-08-20T04:01:03+02:00 Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study Menviel, L. Yu, J. Joos, Fortunat Mouchet, A. Meissner, K. J. England, M. H. 2017 application/pdf https://boris.unibe.ch/100806/1/Menviel_et_al-2017-Paleoceanography.pdf https://boris.unibe.ch/100806/ http://onlinelibrary.wiley.com/doi/10.1002/2016PA003024/abstract eng eng American Geophysical Union https://boris.unibe.ch/100806/ info:eu-repo/semantics/openAccess Menviel, L.; Yu, J.; Joos, Fortunat; Mouchet, A.; Meissner, K. J.; England, M. H. (2017). Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study. Paleoceanography, 32(1), pp. 2-17. American Geophysical Union 10.1002/2016PA003024 <http://dx.doi.org/10.1002/2016PA003024> 530 Physics 550 Earth sciences & geology info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion PeerReviewed 2017 ftunivbern https://doi.org/10.1002/2016PA003024 2023-07-31T21:36:04Z Atmospheric CO₂ was ~90 ppmv lower at the Last Glacial Maximum (LGM) compared to the late Holocene, but the mechanisms responsible for this change remain elusive. Here we employ a carbon isotope-enabled Earth System Model to investigate the role of ocean circulation in setting the LGM oceanic δ¹³C distribution, thereby improving our understanding of glacial/interglacial atmospheric CO₂ variations. We find that the mean ocean δ¹³C change can be explained by a 378 ± 88 Gt C(2σ) smaller LGM terrestrial carbon reservoir compared to the Holocene. Critically, in this model, differences in the oceanic δ¹³C spatial pattern can only be reconciled with a LGM ocean circulation state characterized by a weak (10–15 Sv) and relatively shallow (2000–2500 m) North Atlantic Deep Water cell, reduced Antarctic Bottom Water transport (≤10 Sv globally integrated), and relatively weak (6–8 Sv) and shallow (1000–1500 m) North Pacific Intermediate Water formation. This oceanic circulation state is corroborated by results from the isotope-enabled Bern3D ocean model and further confirmed by high LGM ventilation ages in the deep ocean, particularly in the deep South Atlantic and South Pacific. This suggests a poorly ventilated glacial deep ocean which would have facilitated the sequestration of carbon lost from the terrestrial biosphere and atmosphere. Article in Journal/Newspaper Antarc* Antarctic North Atlantic Deep Water North Atlantic BORIS (Bern Open Repository and Information System, University of Bern) Antarctic Pacific Paleoceanography 32 1 2 17
institution Open Polar
collection BORIS (Bern Open Repository and Information System, University of Bern)
op_collection_id ftunivbern
language English
topic 530 Physics
550 Earth sciences & geology
spellingShingle 530 Physics
550 Earth sciences & geology
Menviel, L.
Yu, J.
Joos, Fortunat
Mouchet, A.
Meissner, K. J.
England, M. H.
Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study
topic_facet 530 Physics
550 Earth sciences & geology
description Atmospheric CO₂ was ~90 ppmv lower at the Last Glacial Maximum (LGM) compared to the late Holocene, but the mechanisms responsible for this change remain elusive. Here we employ a carbon isotope-enabled Earth System Model to investigate the role of ocean circulation in setting the LGM oceanic δ¹³C distribution, thereby improving our understanding of glacial/interglacial atmospheric CO₂ variations. We find that the mean ocean δ¹³C change can be explained by a 378 ± 88 Gt C(2σ) smaller LGM terrestrial carbon reservoir compared to the Holocene. Critically, in this model, differences in the oceanic δ¹³C spatial pattern can only be reconciled with a LGM ocean circulation state characterized by a weak (10–15 Sv) and relatively shallow (2000–2500 m) North Atlantic Deep Water cell, reduced Antarctic Bottom Water transport (≤10 Sv globally integrated), and relatively weak (6–8 Sv) and shallow (1000–1500 m) North Pacific Intermediate Water formation. This oceanic circulation state is corroborated by results from the isotope-enabled Bern3D ocean model and further confirmed by high LGM ventilation ages in the deep ocean, particularly in the deep South Atlantic and South Pacific. This suggests a poorly ventilated glacial deep ocean which would have facilitated the sequestration of carbon lost from the terrestrial biosphere and atmosphere.
format Article in Journal/Newspaper
author Menviel, L.
Yu, J.
Joos, Fortunat
Mouchet, A.
Meissner, K. J.
England, M. H.
author_facet Menviel, L.
Yu, J.
Joos, Fortunat
Mouchet, A.
Meissner, K. J.
England, M. H.
author_sort Menviel, L.
title Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study
title_short Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study
title_full Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study
title_fullStr Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study
title_full_unstemmed Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study
title_sort poorly ventilated deep ocean at the last glacial maximum inferred from carbon isotopes: a data-model comparison study
publisher American Geophysical Union
publishDate 2017
url https://boris.unibe.ch/100806/1/Menviel_et_al-2017-Paleoceanography.pdf
https://boris.unibe.ch/100806/
http://onlinelibrary.wiley.com/doi/10.1002/2016PA003024/abstract
geographic Antarctic
Pacific
geographic_facet Antarctic
Pacific
genre Antarc*
Antarctic
North Atlantic Deep Water
North Atlantic
genre_facet Antarc*
Antarctic
North Atlantic Deep Water
North Atlantic
op_source Menviel, L.; Yu, J.; Joos, Fortunat; Mouchet, A.; Meissner, K. J.; England, M. H. (2017). Poorly ventilated deep ocean at the Last Glacial Maximum inferred from carbon isotopes: A data-model comparison study. Paleoceanography, 32(1), pp. 2-17. American Geophysical Union 10.1002/2016PA003024 <http://dx.doi.org/10.1002/2016PA003024>
op_relation https://boris.unibe.ch/100806/
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1002/2016PA003024
container_title Paleoceanography
container_volume 32
container_issue 1
container_start_page 2
op_container_end_page 17
_version_ 1774722281307635712