Cold Air Mass Analysis of the Record-Breaking Cold Surge Event over East Asia in January 2016

An extreme cold surge event caused record-breaking low temperatures in East Asia during 20-25 January 2016. The planetary- and synoptic-scale feature of the event is investigated quantitatively using the isentropic cold air mass analysis with a threshold potential temperature of 280 K. Because cold...

Full description

Bibliographic Details
Published in:Journal of the Meteorological Society of Japan. Ser. II
Main Authors: Yamaguchi, Junpei, Kanno, Yuki, Chen, Guixing, Iwasaki, Toshiki
Format: Article in Journal/Newspaper
Language:English
Published: Meteorological Society of Japan 2020
Subjects:
Online Access:https://hdl.handle.net/1956/23837
https://doi.org/10.2151/jmsj.2019-015
id ftunivbergen:oai:bora.uib.no:1956/23837
record_format openpolar
spelling ftunivbergen:oai:bora.uib.no:1956/23837 2023-05-15T18:08:27+02:00 Cold Air Mass Analysis of the Record-Breaking Cold Surge Event over East Asia in January 2016 Yamaguchi, Junpei Kanno, Yuki Chen, Guixing Iwasaki, Toshiki 2020-02-10T15:54:17Z application/pdf https://hdl.handle.net/1956/23837 https://doi.org/10.2151/jmsj.2019-015 eng eng Meteorological Society of Japan urn:issn:0026-1165 https://hdl.handle.net/1956/23837 https://doi.org/10.2151/jmsj.2019-015 cristin:1723319 Attribution CC BY http://creativecommons.org/licenses/by/4.0/ Copyright 2019 The Authors Journal of the Meteorological Society of Japan Peer reviewed Journal article 2020 ftunivbergen https://doi.org/10.2151/jmsj.2019-015 2023-03-14T17:40:33Z An extreme cold surge event caused record-breaking low temperatures in East Asia during 20-25 January 2016. The planetary- and synoptic-scale feature of the event is investigated quantitatively using the isentropic cold air mass analysis with a threshold potential temperature of 280 K. Because cold air mass is an adiabatically conservative quantity, it is suitable for tracing and examining the extreme cold surges. We further introduced a metric named mean wind of cold air mass, which divides the factor of cold air mass evolution into convergence and advection parts. The new metric allowed us to trace the evolution of the cold air mass with dynamic consistency for a period of more than a week. A thick cold air mass built up over southern Sakha by a convergent cold air mass flow during 16-18 January. It migrated westward and reached Lake Baikal. On 20 January, an intense Siberian High developed, with an eastward-moving mid-upper-level ridge, producing a strong surface pressure gradient over the coastal regions of the Asian continent. This ridge and a cutoff low to the adjacent east formed a northerly flow in the mid-upper troposphere. The resultant southward flow through the troposphere blew the cold air mass over 480 hPa in thickness to the subtropical region of East Asia, causing strong cold surges there on 24 and 25 January. The abnormality of the event is further quantified using extreme value theory. The cold air mass gradually became rare along the path of the cold air mass from Lake Baikal to eastern China, which experienced as thick a cold air mass as once in 200 years. The cold air mass itself shows little change in thickness. Therefore, the migration of a cold air mass over 540 hPa in thickness from northern Siberia is the major cause of this cold surge extreme. publishedVersion Article in Journal/Newspaper Sakha Siberia University of Bergen: Bergen Open Research Archive (BORA-UiB) Sakha Journal of the Meteorological Society of Japan. Ser. II 97 1 275 293
institution Open Polar
collection University of Bergen: Bergen Open Research Archive (BORA-UiB)
op_collection_id ftunivbergen
language English
description An extreme cold surge event caused record-breaking low temperatures in East Asia during 20-25 January 2016. The planetary- and synoptic-scale feature of the event is investigated quantitatively using the isentropic cold air mass analysis with a threshold potential temperature of 280 K. Because cold air mass is an adiabatically conservative quantity, it is suitable for tracing and examining the extreme cold surges. We further introduced a metric named mean wind of cold air mass, which divides the factor of cold air mass evolution into convergence and advection parts. The new metric allowed us to trace the evolution of the cold air mass with dynamic consistency for a period of more than a week. A thick cold air mass built up over southern Sakha by a convergent cold air mass flow during 16-18 January. It migrated westward and reached Lake Baikal. On 20 January, an intense Siberian High developed, with an eastward-moving mid-upper-level ridge, producing a strong surface pressure gradient over the coastal regions of the Asian continent. This ridge and a cutoff low to the adjacent east formed a northerly flow in the mid-upper troposphere. The resultant southward flow through the troposphere blew the cold air mass over 480 hPa in thickness to the subtropical region of East Asia, causing strong cold surges there on 24 and 25 January. The abnormality of the event is further quantified using extreme value theory. The cold air mass gradually became rare along the path of the cold air mass from Lake Baikal to eastern China, which experienced as thick a cold air mass as once in 200 years. The cold air mass itself shows little change in thickness. Therefore, the migration of a cold air mass over 540 hPa in thickness from northern Siberia is the major cause of this cold surge extreme. publishedVersion
format Article in Journal/Newspaper
author Yamaguchi, Junpei
Kanno, Yuki
Chen, Guixing
Iwasaki, Toshiki
spellingShingle Yamaguchi, Junpei
Kanno, Yuki
Chen, Guixing
Iwasaki, Toshiki
Cold Air Mass Analysis of the Record-Breaking Cold Surge Event over East Asia in January 2016
author_facet Yamaguchi, Junpei
Kanno, Yuki
Chen, Guixing
Iwasaki, Toshiki
author_sort Yamaguchi, Junpei
title Cold Air Mass Analysis of the Record-Breaking Cold Surge Event over East Asia in January 2016
title_short Cold Air Mass Analysis of the Record-Breaking Cold Surge Event over East Asia in January 2016
title_full Cold Air Mass Analysis of the Record-Breaking Cold Surge Event over East Asia in January 2016
title_fullStr Cold Air Mass Analysis of the Record-Breaking Cold Surge Event over East Asia in January 2016
title_full_unstemmed Cold Air Mass Analysis of the Record-Breaking Cold Surge Event over East Asia in January 2016
title_sort cold air mass analysis of the record-breaking cold surge event over east asia in january 2016
publisher Meteorological Society of Japan
publishDate 2020
url https://hdl.handle.net/1956/23837
https://doi.org/10.2151/jmsj.2019-015
geographic Sakha
geographic_facet Sakha
genre Sakha
Siberia
genre_facet Sakha
Siberia
op_source Journal of the Meteorological Society of Japan
op_relation urn:issn:0026-1165
https://hdl.handle.net/1956/23837
https://doi.org/10.2151/jmsj.2019-015
cristin:1723319
op_rights Attribution CC BY
http://creativecommons.org/licenses/by/4.0/
Copyright 2019 The Authors
op_doi https://doi.org/10.2151/jmsj.2019-015
container_title Journal of the Meteorological Society of Japan. Ser. II
container_volume 97
container_issue 1
container_start_page 275
op_container_end_page 293
_version_ 1766180729356550144