A low-cost autonomous rover for polar science

We present the developmental considerations, design, and deployment of an autonomous modular terrestrial rover for ice-sheet exploration that is inexpensive, easy to construct, and allows for instrumentation customization. The total construction cost for this rover is less than USD 3000, approximate...

Full description

Bibliographic Details
Published in:Geoscientific Instrumentation, Methods and Data Systems
Main Authors: Hoffman, Andrew, Christian Steen-Larsen, Hans, Christianson, Knut, Hvidberg, Christine
Format: Article in Journal/Newspaper
Language:English
Published: Copernicus Publications 2020
Subjects:
Online Access:https://hdl.handle.net/1956/21842
https://doi.org/10.5194/gi-8-149-2019
id ftunivbergen:oai:bora.uib.no:1956/21842
record_format openpolar
spelling ftunivbergen:oai:bora.uib.no:1956/21842 2023-05-15T16:03:54+02:00 A low-cost autonomous rover for polar science Hoffman, Andrew Christian Steen-Larsen, Hans Christianson, Knut Hvidberg, Christine 2020-01-14T14:40:22Z application/pdf https://hdl.handle.net/1956/21842 https://doi.org/10.5194/gi-8-149-2019 eng eng Copernicus Publications urn:issn:2193-0864 urn:issn:2193-0856 https://hdl.handle.net/1956/21842 https://doi.org/10.5194/gi-8-149-2019 cristin:1713328 Attribution CC BY http://creativecommons.org/licenses/by/4.0/ Copyright 2019 The Author(s) Geoscientific Instrumentation, Methods and Data Systems Peer reviewed Journal article 2020 ftunivbergen https://doi.org/10.5194/gi-8-149-2019 2023-03-14T17:40:10Z We present the developmental considerations, design, and deployment of an autonomous modular terrestrial rover for ice-sheet exploration that is inexpensive, easy to construct, and allows for instrumentation customization. The total construction cost for this rover is less than USD 3000, approximately one-tenth the cost of existing platforms, and it can be built using facilities frequently available at academic institutions (machine shop, 3-D printer, open-source hardware and software). Instrumentation deployed on this rover can be customized; the rover presented in this study was equipped with a dual-frequency GPS receiver and a digital SLR camera for constructing digital elevation models using structure-from-motion (SfM) photogrammetry. We deployed this prototype rover on the Northeast Greenland Ice Stream to map local variations in snow accumulation and surface topography. The rover conducted four autonomous missions based out of the East Greenland Ice-Core Project (EastGRIP) camp during July 2017, measuring surface elevation transects across the hazardous ice-stream shear margins. During these missions, the rover proved capable of driving over 20 km on a single charge with a drawbar pull of 250 N, sufficient to tow instrumentation of up to 100 kg. The rover also acquired photographs that were subsequently used to construct digital elevation models of a site monitored for spatiotemporal variability in snow accumulation, demonstrating adequate stability for high-resolution imaging applications. Due to its low cost, low-power requirements, and simple modular design, mass deployments of this rover design are practicable. Operation of the rover in hazardous areas circumvents the substantial expense and risk to personnel associated with conventional, crewed deployments. Thus, this rover is an investigatory platform that enables direct exploration of polar environments considered too hazardous for conventional field expeditions. publishedVersion Article in Journal/Newspaper East Greenland East Greenland Ice-core Project Greenland Greenland ice core Greenland Ice core Project ice core Ice Sheet University of Bergen: Bergen Open Research Archive (BORA-UiB) Greenland Geoscientific Instrumentation, Methods and Data Systems 8 1 149 159
institution Open Polar
collection University of Bergen: Bergen Open Research Archive (BORA-UiB)
op_collection_id ftunivbergen
language English
description We present the developmental considerations, design, and deployment of an autonomous modular terrestrial rover for ice-sheet exploration that is inexpensive, easy to construct, and allows for instrumentation customization. The total construction cost for this rover is less than USD 3000, approximately one-tenth the cost of existing platforms, and it can be built using facilities frequently available at academic institutions (machine shop, 3-D printer, open-source hardware and software). Instrumentation deployed on this rover can be customized; the rover presented in this study was equipped with a dual-frequency GPS receiver and a digital SLR camera for constructing digital elevation models using structure-from-motion (SfM) photogrammetry. We deployed this prototype rover on the Northeast Greenland Ice Stream to map local variations in snow accumulation and surface topography. The rover conducted four autonomous missions based out of the East Greenland Ice-Core Project (EastGRIP) camp during July 2017, measuring surface elevation transects across the hazardous ice-stream shear margins. During these missions, the rover proved capable of driving over 20 km on a single charge with a drawbar pull of 250 N, sufficient to tow instrumentation of up to 100 kg. The rover also acquired photographs that were subsequently used to construct digital elevation models of a site monitored for spatiotemporal variability in snow accumulation, demonstrating adequate stability for high-resolution imaging applications. Due to its low cost, low-power requirements, and simple modular design, mass deployments of this rover design are practicable. Operation of the rover in hazardous areas circumvents the substantial expense and risk to personnel associated with conventional, crewed deployments. Thus, this rover is an investigatory platform that enables direct exploration of polar environments considered too hazardous for conventional field expeditions. publishedVersion
format Article in Journal/Newspaper
author Hoffman, Andrew
Christian Steen-Larsen, Hans
Christianson, Knut
Hvidberg, Christine
spellingShingle Hoffman, Andrew
Christian Steen-Larsen, Hans
Christianson, Knut
Hvidberg, Christine
A low-cost autonomous rover for polar science
author_facet Hoffman, Andrew
Christian Steen-Larsen, Hans
Christianson, Knut
Hvidberg, Christine
author_sort Hoffman, Andrew
title A low-cost autonomous rover for polar science
title_short A low-cost autonomous rover for polar science
title_full A low-cost autonomous rover for polar science
title_fullStr A low-cost autonomous rover for polar science
title_full_unstemmed A low-cost autonomous rover for polar science
title_sort low-cost autonomous rover for polar science
publisher Copernicus Publications
publishDate 2020
url https://hdl.handle.net/1956/21842
https://doi.org/10.5194/gi-8-149-2019
geographic Greenland
geographic_facet Greenland
genre East Greenland
East Greenland Ice-core Project
Greenland
Greenland ice core
Greenland Ice core Project
ice core
Ice Sheet
genre_facet East Greenland
East Greenland Ice-core Project
Greenland
Greenland ice core
Greenland Ice core Project
ice core
Ice Sheet
op_source Geoscientific Instrumentation, Methods and Data Systems
op_relation urn:issn:2193-0864
urn:issn:2193-0856
https://hdl.handle.net/1956/21842
https://doi.org/10.5194/gi-8-149-2019
cristin:1713328
op_rights Attribution CC BY
http://creativecommons.org/licenses/by/4.0/
Copyright 2019 The Author(s)
op_doi https://doi.org/10.5194/gi-8-149-2019
container_title Geoscientific Instrumentation, Methods and Data Systems
container_volume 8
container_issue 1
container_start_page 149
op_container_end_page 159
_version_ 1766399590316113920