Sea-level change over the northern European continental shelf due to atmospheric and oceanic contributions

Global mean sea level (GMSL) is a key indicator of climate change as it comprises information on different components of the climate system. However, despite its importance for climate and society, GMSL cannot be used for coastal adaptation policies because regional sea-level variations can signific...

Full description

Bibliographic Details
Published in:Ocean Science
Main Author: Mangini, Fabio
Other Authors: orcid:0000-0002-4710-104X
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: The University of Bergen 2022
Subjects:
Online Access:https://hdl.handle.net/11250/3011735
Description
Summary:Global mean sea level (GMSL) is a key indicator of climate change as it comprises information on different components of the climate system. However, despite its importance for climate and society, GMSL cannot be used for coastal adaptation policies because regional sea-level variations can significantly depart from the global average. Providing accurate estimates of sea-level rise is therefore one of the most important scientific issues that climate change poses, with a large impact for the human population as it is recognized as the main driver for changes in sea-level extremes, influencing the non-linear interactions between processes acting over different temporal and spatial scales in coastal areas. This thesis addresses different aspects of the sea-level variability over the northern European continental shelf. Paper I uses gridded satellite altimetry data and adopts the jet clusters perspective of the winter-time atmospheric variability over the North Atlantic to reassess the contribution of local winds to the sea-level variability over the northern European continental shelf. By using the jet clusters, Paper I distinguishes itself from the existing literature since the jet clusters provide a physical description of the atmospheric variability in the North Atlantic. Papers II and III focus on the steric and manometric components of the sea-level over the Norwegian section of the northern European continental shelf and on the sea-level observing system in the region. Paper II first evaluates a coastal altimetry dataset, reprocessed with the ALES-retracker, against the Norwegian set of tide gauges. After showing a good agreement between the two, it exploits the coastal satellite altimetry dataset to reassess the steric component of the sea level over the Norwegian shelf: the paper finds that the estimates of the steric component of the sea-level do not depend much on the choice of the tide gauges or satellite altimetry. Paper III evaluates the sea-level observing system along the Norwegian coast by ...