Environmental Change at Deep-Sea Sponge Habitats Over the Last Half Century: A Model Hindcast Study for the Age of Anthropogenic Climate Change

Deep-sea sponges inhabit multiple areas of the deep North Atlantic at depths below 250 m. Living in the deep ocean, where environmental properties below the permanent thermocline generally change slowly, they may not easily acclimatize to abrupt changes in the environment. Until now consistent monit...

Full description

Bibliographic Details
Published in:Frontiers in Marine Science
Main Authors: Samuelsen, Annette, Schrum, Corinna, Yumruktepe, Veli Caglar, Daewel, Ute, Roberts, Emyr Martyn
Format: Article in Journal/Newspaper
Language:English
Published: Frontiers 2022
Subjects:
Online Access:https://hdl.handle.net/11250/2996498
https://doi.org/10.3389/fmars.2022.737164
id ftunivbergen:oai:bora.uib.no:11250/2996498
record_format openpolar
spelling ftunivbergen:oai:bora.uib.no:11250/2996498 2023-05-15T15:15:02+02:00 Environmental Change at Deep-Sea Sponge Habitats Over the Last Half Century: A Model Hindcast Study for the Age of Anthropogenic Climate Change Samuelsen, Annette Schrum, Corinna Yumruktepe, Veli Caglar Daewel, Ute Roberts, Emyr Martyn 2022-03-24 application/pdf https://hdl.handle.net/11250/2996498 https://doi.org/10.3389/fmars.2022.737164 eng eng Frontiers Notur/NorStore: NS9481K Notur/NorStore: NN9481K EC/H2020/679849 urn:issn:2296-7745 https://hdl.handle.net/11250/2996498 https://doi.org/10.3389/fmars.2022.737164 cristin:2015862 Frontiers in Marine Science. 2022, 9, 737164. Navngivelse 4.0 Internasjonal http://creativecommons.org/licenses/by/4.0/deed.no Copyright 2022 the authors 737164 Frontiers in Marine Science 9 Journal article Peer reviewed 2022 ftunivbergen https://doi.org/10.3389/fmars.2022.737164 2023-03-14T17:42:38Z Deep-sea sponges inhabit multiple areas of the deep North Atlantic at depths below 250 m. Living in the deep ocean, where environmental properties below the permanent thermocline generally change slowly, they may not easily acclimatize to abrupt changes in the environment. Until now consistent monitoring timeseries of the environment at deep sea sponge habitats are missing. Therefore, long-term simulation with coupled bio-physical models can shed light on the changes in environmental conditions sponges are exposed to. To investigate the variability of North Atlantic sponge habitats for the past half century, the deep-sea conditions have been simulated with a 67-year model hindcast from 1948 to 2014. The hindcast was generated using the ocean general circulation model HYCOM, coupled to the biogeochemical model ECOSMO. The model was validated at known sponge habitats with available observations of hydrography and nutrients from the deep ocean to evaluate the biases, errors, and drift in the model. Knowing the biases and uncertainties we proceed to study the longer-term (monthly to multi-decadal) environmental variability at selected sponge habitats in the North Atlantic and Arctic Ocean. On these timescales, these deep sponge habitats generally exhibit small variability in the water-mass properties. Three of the sponge habitats, the Flemish Cap, East Greenland Shelf and North Norwegian Shelf, had fluctuations of temperature and salinity in 4–6 year periods that indicate the dominance of different water masses during these periods. The fourth sponge habitat, the Reykjanes Ridge, showed a gradual warming of about 0.4°C over the simulation period. The flux of organic matter to the sea floor had a large interannual variability, that, compared to the 67-year mean, was larger than the variability of primary production in the surface waters. Lateral circulation is therefore likely an important control mechanism for the influx of organic material to the sponge habitats. Simulated oxygen varies interannually by less than ... Article in Journal/Newspaper Arctic Arctic Ocean Climate change East Greenland Greenland North Atlantic University of Bergen: Bergen Open Research Archive (BORA-UiB) Arctic Arctic Ocean Greenland Reykjanes ENVELOPE(-22.250,-22.250,65.467,65.467) Frontiers in Marine Science 9
institution Open Polar
collection University of Bergen: Bergen Open Research Archive (BORA-UiB)
op_collection_id ftunivbergen
language English
description Deep-sea sponges inhabit multiple areas of the deep North Atlantic at depths below 250 m. Living in the deep ocean, where environmental properties below the permanent thermocline generally change slowly, they may not easily acclimatize to abrupt changes in the environment. Until now consistent monitoring timeseries of the environment at deep sea sponge habitats are missing. Therefore, long-term simulation with coupled bio-physical models can shed light on the changes in environmental conditions sponges are exposed to. To investigate the variability of North Atlantic sponge habitats for the past half century, the deep-sea conditions have been simulated with a 67-year model hindcast from 1948 to 2014. The hindcast was generated using the ocean general circulation model HYCOM, coupled to the biogeochemical model ECOSMO. The model was validated at known sponge habitats with available observations of hydrography and nutrients from the deep ocean to evaluate the biases, errors, and drift in the model. Knowing the biases and uncertainties we proceed to study the longer-term (monthly to multi-decadal) environmental variability at selected sponge habitats in the North Atlantic and Arctic Ocean. On these timescales, these deep sponge habitats generally exhibit small variability in the water-mass properties. Three of the sponge habitats, the Flemish Cap, East Greenland Shelf and North Norwegian Shelf, had fluctuations of temperature and salinity in 4–6 year periods that indicate the dominance of different water masses during these periods. The fourth sponge habitat, the Reykjanes Ridge, showed a gradual warming of about 0.4°C over the simulation period. The flux of organic matter to the sea floor had a large interannual variability, that, compared to the 67-year mean, was larger than the variability of primary production in the surface waters. Lateral circulation is therefore likely an important control mechanism for the influx of organic material to the sponge habitats. Simulated oxygen varies interannually by less than ...
format Article in Journal/Newspaper
author Samuelsen, Annette
Schrum, Corinna
Yumruktepe, Veli Caglar
Daewel, Ute
Roberts, Emyr Martyn
spellingShingle Samuelsen, Annette
Schrum, Corinna
Yumruktepe, Veli Caglar
Daewel, Ute
Roberts, Emyr Martyn
Environmental Change at Deep-Sea Sponge Habitats Over the Last Half Century: A Model Hindcast Study for the Age of Anthropogenic Climate Change
author_facet Samuelsen, Annette
Schrum, Corinna
Yumruktepe, Veli Caglar
Daewel, Ute
Roberts, Emyr Martyn
author_sort Samuelsen, Annette
title Environmental Change at Deep-Sea Sponge Habitats Over the Last Half Century: A Model Hindcast Study for the Age of Anthropogenic Climate Change
title_short Environmental Change at Deep-Sea Sponge Habitats Over the Last Half Century: A Model Hindcast Study for the Age of Anthropogenic Climate Change
title_full Environmental Change at Deep-Sea Sponge Habitats Over the Last Half Century: A Model Hindcast Study for the Age of Anthropogenic Climate Change
title_fullStr Environmental Change at Deep-Sea Sponge Habitats Over the Last Half Century: A Model Hindcast Study for the Age of Anthropogenic Climate Change
title_full_unstemmed Environmental Change at Deep-Sea Sponge Habitats Over the Last Half Century: A Model Hindcast Study for the Age of Anthropogenic Climate Change
title_sort environmental change at deep-sea sponge habitats over the last half century: a model hindcast study for the age of anthropogenic climate change
publisher Frontiers
publishDate 2022
url https://hdl.handle.net/11250/2996498
https://doi.org/10.3389/fmars.2022.737164
long_lat ENVELOPE(-22.250,-22.250,65.467,65.467)
geographic Arctic
Arctic Ocean
Greenland
Reykjanes
geographic_facet Arctic
Arctic Ocean
Greenland
Reykjanes
genre Arctic
Arctic Ocean
Climate change
East Greenland
Greenland
North Atlantic
genre_facet Arctic
Arctic Ocean
Climate change
East Greenland
Greenland
North Atlantic
op_source 737164
Frontiers in Marine Science
9
op_relation Notur/NorStore: NS9481K
Notur/NorStore: NN9481K
EC/H2020/679849
urn:issn:2296-7745
https://hdl.handle.net/11250/2996498
https://doi.org/10.3389/fmars.2022.737164
cristin:2015862
Frontiers in Marine Science. 2022, 9, 737164.
op_rights Navngivelse 4.0 Internasjonal
http://creativecommons.org/licenses/by/4.0/deed.no
Copyright 2022 the authors
op_doi https://doi.org/10.3389/fmars.2022.737164
container_title Frontiers in Marine Science
container_volume 9
_version_ 1766345422105739264