Atmospheric Circulation Response to Short-Term Arctic Warming in an Idealized Model

Recent Arctic sea ice loss in fall has been posited to drive midlatitude circulation changes into winter and even spring. Past work has shown that sea ice loss can indeed trigger a weakening of the stratospheric polar vortex, which can lead to delayed surface weather changes. But the mechanisms of s...

Full description

Bibliographic Details
Published in:Journal of the Atmospheric Sciences
Main Authors: Hell, Momme, Schneider, Tapio, Li, Camille
Format: Article in Journal/Newspaper
Language:English
Published: American Meteorological Society 2020
Subjects:
Online Access:https://hdl.handle.net/11250/2764604
https://doi.org/10.1175/JAS-D-19-0133.1
id ftunivbergen:oai:bora.uib.no:11250/2764604
record_format openpolar
spelling ftunivbergen:oai:bora.uib.no:11250/2764604 2023-05-15T15:00:02+02:00 Atmospheric Circulation Response to Short-Term Arctic Warming in an Idealized Model Hell, Momme Schneider, Tapio Li, Camille 2020 application/pdf https://hdl.handle.net/11250/2764604 https://doi.org/10.1175/JAS-D-19-0133.1 eng eng American Meteorological Society Norges forskningsråd: 255027 urn:issn:0022-4928 https://hdl.handle.net/11250/2764604 https://doi.org/10.1175/JAS-D-19-0133.1 cristin:1727851 Journal of the Atmospheric Sciences. 2020, 77 (2), 531-549. Copyright 2020 American Meteorological Society Journal of the Atmospheric Sciences 531-549 77 2 Journal article Peer reviewed 2020 ftunivbergen https://doi.org/10.1175/JAS-D-19-0133.1 2023-03-14T17:44:09Z Recent Arctic sea ice loss in fall has been posited to drive midlatitude circulation changes into winter and even spring. Past work has shown that sea ice loss can indeed trigger a weakening of the stratospheric polar vortex, which can lead to delayed surface weather changes. But the mechanisms of such changes and their relevant time scales have remained unclear. This study uses large ensembles of idealized GCM simulations to identify how and over what time scales the atmospheric circulation responds to short-term surface heat flux changes in high latitudes. The ensemble-mean response of the atmospheric circulation is approximately linear in the amplitude of the surface forcing. It is also insensitive to whether the forcing is zonally asymmetric or symmetric, that is, whether stationary waves are generated or not. The circulation response can be decomposed into a rapid thermal response and a slower dynamic adjustment. The adjustment arises through weakening of vertical wave activity fluxes from the troposphere into the stratosphere in response to polar warming, a mechanism that differs from sudden stratospheric warmings yet still results in a weakened stratospheric circulation. The stratospheric response is delayed and persists for about 2 months because the thermal response of the stratosphere is slow compared with that of the troposphere. The delayed stratospheric response feeds back onto the troposphere, but the tropospheric effects are weak compared with natural variability. The general pathway for the delayed response appears to be relatively independent of the atmospheric background state at the time of the anomalous surface forcing. publishedVersion Article in Journal/Newspaper Arctic Sea ice University of Bergen: Bergen Open Research Archive (BORA-UiB) Arctic Journal of the Atmospheric Sciences 77 2 531 549
institution Open Polar
collection University of Bergen: Bergen Open Research Archive (BORA-UiB)
op_collection_id ftunivbergen
language English
description Recent Arctic sea ice loss in fall has been posited to drive midlatitude circulation changes into winter and even spring. Past work has shown that sea ice loss can indeed trigger a weakening of the stratospheric polar vortex, which can lead to delayed surface weather changes. But the mechanisms of such changes and their relevant time scales have remained unclear. This study uses large ensembles of idealized GCM simulations to identify how and over what time scales the atmospheric circulation responds to short-term surface heat flux changes in high latitudes. The ensemble-mean response of the atmospheric circulation is approximately linear in the amplitude of the surface forcing. It is also insensitive to whether the forcing is zonally asymmetric or symmetric, that is, whether stationary waves are generated or not. The circulation response can be decomposed into a rapid thermal response and a slower dynamic adjustment. The adjustment arises through weakening of vertical wave activity fluxes from the troposphere into the stratosphere in response to polar warming, a mechanism that differs from sudden stratospheric warmings yet still results in a weakened stratospheric circulation. The stratospheric response is delayed and persists for about 2 months because the thermal response of the stratosphere is slow compared with that of the troposphere. The delayed stratospheric response feeds back onto the troposphere, but the tropospheric effects are weak compared with natural variability. The general pathway for the delayed response appears to be relatively independent of the atmospheric background state at the time of the anomalous surface forcing. publishedVersion
format Article in Journal/Newspaper
author Hell, Momme
Schneider, Tapio
Li, Camille
spellingShingle Hell, Momme
Schneider, Tapio
Li, Camille
Atmospheric Circulation Response to Short-Term Arctic Warming in an Idealized Model
author_facet Hell, Momme
Schneider, Tapio
Li, Camille
author_sort Hell, Momme
title Atmospheric Circulation Response to Short-Term Arctic Warming in an Idealized Model
title_short Atmospheric Circulation Response to Short-Term Arctic Warming in an Idealized Model
title_full Atmospheric Circulation Response to Short-Term Arctic Warming in an Idealized Model
title_fullStr Atmospheric Circulation Response to Short-Term Arctic Warming in an Idealized Model
title_full_unstemmed Atmospheric Circulation Response to Short-Term Arctic Warming in an Idealized Model
title_sort atmospheric circulation response to short-term arctic warming in an idealized model
publisher American Meteorological Society
publishDate 2020
url https://hdl.handle.net/11250/2764604
https://doi.org/10.1175/JAS-D-19-0133.1
geographic Arctic
geographic_facet Arctic
genre Arctic
Sea ice
genre_facet Arctic
Sea ice
op_source Journal of the Atmospheric Sciences
531-549
77
2
op_relation Norges forskningsråd: 255027
urn:issn:0022-4928
https://hdl.handle.net/11250/2764604
https://doi.org/10.1175/JAS-D-19-0133.1
cristin:1727851
Journal of the Atmospheric Sciences. 2020, 77 (2), 531-549.
op_rights Copyright 2020 American Meteorological Society
op_doi https://doi.org/10.1175/JAS-D-19-0133.1
container_title Journal of the Atmospheric Sciences
container_volume 77
container_issue 2
container_start_page 531
op_container_end_page 549
_version_ 1766332151791353856