Mn- and Fe-carbonate rich layers in Meso.Cenozoic shales as proxies of environmental conditions: a case study from the southern Apennine, Italy

Mn-rich layers and interbedded shales from a well exposed natural section of the Northern-Calabrian Unit (Late Jurassic– Early Oligocene) in the surroundings of the Terranova del Pollino village, southern Italy, have been mineralogically and chemically analyzed, in order to reveal the factors contro...

Full description

Bibliographic Details
Main Authors: MONGELLI, Giovanni, PATERNOSTER, Michele, CRITELLI S, DINELLI E, PERRI F.
Other Authors: Mongelli, Giovanni, Critelli, S, Dinelli, E, Paternoster, Michele, Perri, F.
Format: Article in Journal/Newspaper
Language:English
Published: 2010
Subjects:
Online Access:http://hdl.handle.net/11563/16622
id ftunivbasilicata:oai:iris.unibas.it:11563/16622
record_format openpolar
spelling ftunivbasilicata:oai:iris.unibas.it:11563/16622 2024-04-14T08:20:21+00:00 Mn- and Fe-carbonate rich layers in Meso.Cenozoic shales as proxies of environmental conditions: a case study from the southern Apennine, Italy MONGELLI, Giovanni PATERNOSTER, Michele CRITELLI S DINELLI E PERRI F. Mongelli, Giovanni Critelli, S Dinelli, E Paternoster, Michele Perri, F. 2010 http://hdl.handle.net/11563/16622 eng eng info:eu-repo/semantics/altIdentifier/wos/WOS:000278974600006 volume:44 issue:3 firstpage:211 lastpage:223 numberofpages:13 journal:GEOCHEMICAL JOURNAL http://hdl.handle.net/11563/16622 info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-79957946802 info:eu-repo/semantics/closedAccess geochemistry manganese Northern-Calabrian Unit rhodochrosite southern Italy info:eu-repo/semantics/article 2010 ftunivbasilicata 2024-03-21T17:29:48Z Mn-rich layers and interbedded shales from a well exposed natural section of the Northern-Calabrian Unit (Late Jurassic– Early Oligocene) in the surroundings of the Terranova del Pollino village, southern Italy, have been mineralogically and chemically analyzed, in order to reveal the factors controlling their formation. Mn-rich layers are composed of micas/clay minerals, rhodochrosite, siderite, chlorite and quartz whereas shales are formed by micas, clay minerals, chlorite, quartz, and feldspars. The MnO abundances in the Mn-rich layers, which are depleted relatively to the UCC in SiO2, TiO2, Al2O3, Na2O, K2O, and P2O5, are in the range of 11.01 18.41 (wt. %). R-mode Factor analysis indicate that SiO2, Al2O3, TiO2, Na2O and K2O have high positive weights in the first factor (59.8% of the total variance) whereas high negative weights are observed for Fe2O3, MnO, and CaO. This factor accounts for the competition between the terrigeneous component, the authigenic carbonate phases accumulating Mn and Fe which likely formed during paucity of detrital supply. The negative weight of CaO and MnO in this factor, the higher Ca contents in the Mn-rich layers compared to shales, and the lack of calcite, suggest the presence of a mixed Mn–Ca carbonate rather than pure rhodochrosite. It is generally retained that Ca– rhodochrosite precipitates within the pore waters of reducing sediments since neither rhodochrosite nor siderite can form in equilibrium with bottom seawater. Thus the resulting sediment should be a mixing between the detrital component and the authigenic one. Assuming Al2O3 as an index of the detrital component, it is clearly envisaged that in the Al2O3/MnO vs. Al2O3 diagram the carbonate-rich samples fall on the mixing curve having as end members the average shale and the richest MnO sediment. This supports the idea that carbonate-rich samples formed through precipitation of carbonate minerals in the pore waters of the terrigenous detritus accumulating at the sea bottom. Further the REE distribution of ... Article in Journal/Newspaper Terranova Università degli Studi della Basilicata: CINECA IRIS
institution Open Polar
collection Università degli Studi della Basilicata: CINECA IRIS
op_collection_id ftunivbasilicata
language English
topic geochemistry
manganese
Northern-Calabrian Unit
rhodochrosite
southern Italy
spellingShingle geochemistry
manganese
Northern-Calabrian Unit
rhodochrosite
southern Italy
MONGELLI, Giovanni
PATERNOSTER, Michele
CRITELLI S
DINELLI E
PERRI F.
Mn- and Fe-carbonate rich layers in Meso.Cenozoic shales as proxies of environmental conditions: a case study from the southern Apennine, Italy
topic_facet geochemistry
manganese
Northern-Calabrian Unit
rhodochrosite
southern Italy
description Mn-rich layers and interbedded shales from a well exposed natural section of the Northern-Calabrian Unit (Late Jurassic– Early Oligocene) in the surroundings of the Terranova del Pollino village, southern Italy, have been mineralogically and chemically analyzed, in order to reveal the factors controlling their formation. Mn-rich layers are composed of micas/clay minerals, rhodochrosite, siderite, chlorite and quartz whereas shales are formed by micas, clay minerals, chlorite, quartz, and feldspars. The MnO abundances in the Mn-rich layers, which are depleted relatively to the UCC in SiO2, TiO2, Al2O3, Na2O, K2O, and P2O5, are in the range of 11.01 18.41 (wt. %). R-mode Factor analysis indicate that SiO2, Al2O3, TiO2, Na2O and K2O have high positive weights in the first factor (59.8% of the total variance) whereas high negative weights are observed for Fe2O3, MnO, and CaO. This factor accounts for the competition between the terrigeneous component, the authigenic carbonate phases accumulating Mn and Fe which likely formed during paucity of detrital supply. The negative weight of CaO and MnO in this factor, the higher Ca contents in the Mn-rich layers compared to shales, and the lack of calcite, suggest the presence of a mixed Mn–Ca carbonate rather than pure rhodochrosite. It is generally retained that Ca– rhodochrosite precipitates within the pore waters of reducing sediments since neither rhodochrosite nor siderite can form in equilibrium with bottom seawater. Thus the resulting sediment should be a mixing between the detrital component and the authigenic one. Assuming Al2O3 as an index of the detrital component, it is clearly envisaged that in the Al2O3/MnO vs. Al2O3 diagram the carbonate-rich samples fall on the mixing curve having as end members the average shale and the richest MnO sediment. This supports the idea that carbonate-rich samples formed through precipitation of carbonate minerals in the pore waters of the terrigenous detritus accumulating at the sea bottom. Further the REE distribution of ...
author2 Mongelli, Giovanni
Critelli, S
Dinelli, E
Paternoster, Michele
Perri, F.
format Article in Journal/Newspaper
author MONGELLI, Giovanni
PATERNOSTER, Michele
CRITELLI S
DINELLI E
PERRI F.
author_facet MONGELLI, Giovanni
PATERNOSTER, Michele
CRITELLI S
DINELLI E
PERRI F.
author_sort MONGELLI, Giovanni
title Mn- and Fe-carbonate rich layers in Meso.Cenozoic shales as proxies of environmental conditions: a case study from the southern Apennine, Italy
title_short Mn- and Fe-carbonate rich layers in Meso.Cenozoic shales as proxies of environmental conditions: a case study from the southern Apennine, Italy
title_full Mn- and Fe-carbonate rich layers in Meso.Cenozoic shales as proxies of environmental conditions: a case study from the southern Apennine, Italy
title_fullStr Mn- and Fe-carbonate rich layers in Meso.Cenozoic shales as proxies of environmental conditions: a case study from the southern Apennine, Italy
title_full_unstemmed Mn- and Fe-carbonate rich layers in Meso.Cenozoic shales as proxies of environmental conditions: a case study from the southern Apennine, Italy
title_sort mn- and fe-carbonate rich layers in meso.cenozoic shales as proxies of environmental conditions: a case study from the southern apennine, italy
publishDate 2010
url http://hdl.handle.net/11563/16622
genre Terranova
genre_facet Terranova
op_relation info:eu-repo/semantics/altIdentifier/wos/WOS:000278974600006
volume:44
issue:3
firstpage:211
lastpage:223
numberofpages:13
journal:GEOCHEMICAL JOURNAL
http://hdl.handle.net/11563/16622
info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-79957946802
op_rights info:eu-repo/semantics/closedAccess
_version_ 1796298609311875072