The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications

Both the nitrogen (N) isotopic composition (δ15N) of the nitrate source and the magnitude of isotope discrimination associated with nitrate assimilation are required to estimate the degree of past nitrate consumption from the δ15N of organic matter in Southern Ocean sediments (e.g., preserved within...

Full description

Bibliographic Details
Published in:Geochimica et Cosmochimica Acta
Main Authors: Fripiat, François, Martinez-Garcia, Alfredo, Fawcett, Sarah E., Kemeny, Preston C., Studer, Anja S., Smart, Sandi M., Rubach, Florian, Oleynik, Sergey, Sigman, Daniel M., Haug, Gerald H.
Format: Article in Journal/Newspaper
Language:unknown
Published: Elsevier 2019
Subjects:
Online Access:https://edoc.unibas.ch/68640/
https://doi.org/10.1016/j.gca.2018.12.003
id ftunivbasel:oai:edoc.unibas.ch:68640
record_format openpolar
spelling ftunivbasel:oai:edoc.unibas.ch:68640 2023-05-15T14:05:17+02:00 The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications Fripiat, François Martinez-Garcia, Alfredo Fawcett, Sarah E. Kemeny, Preston C. Studer, Anja S. Smart, Sandi M. Rubach, Florian Oleynik, Sergey Sigman, Daniel M. Haug, Gerald H. 2019 https://edoc.unibas.ch/68640/ https://doi.org/10.1016/j.gca.2018.12.003 unknown Elsevier Fripiat, François and Martinez-Garcia, Alfredo and Fawcett, Sarah E. and Kemeny, Preston C. and Studer, Anja S. and Smart, Sandi M. and Rubach, Florian and Oleynik, Sergey and Sigman, Daniel M. and Haug, Gerald H. (2019) The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications. Geochimica et Cosmochimica Acta, 247. pp. 261-279. doi:10.1016/j.gca.2018.12.003 urn:ISSN:0016-7037 urn:ISSN:1872-9533 info:eu-repo/semantics/closedAccess Article PeerReviewed 2019 ftunivbasel https://doi.org/10.1016/j.gca.2018.12.003 2023-03-05T07:21:20Z Both the nitrogen (N) isotopic composition (δ15N) of the nitrate source and the magnitude of isotope discrimination associated with nitrate assimilation are required to estimate the degree of past nitrate consumption from the δ15N of organic matter in Southern Ocean sediments (e.g., preserved within diatom microfossils). It has been suggested that the amplitude of isotope discrimination (i.e. the isotope effect) correlates with mixed layer depth, driven by a physiological response of phytoplankton to light availability, which introduces complexity to the interpretation of sedimentary records. However, most of the isotope effect estimates that underpin this hypothesis derive from acid-preserved water samples, from which nitrite would have been volatilized and lost during storage. Nitrite δ15N in Antarctic Zone surface waters is extremely low (−61 ± 20‰), consistent with the expression of an equilibrium isotope effect associated with nitrate–nitrite interconversion. Its loss from the combined nitrate + nitrite pool would act to raise the δ15N of nitrate, potentially yielding overestimation of the isotope effect. Here, we revisit the nitrate assimilation isotope effect in the Antarctic Zone with measurements of the δ15N and concentration of nitrate with and without nitrite, using frozen sea water samples from 5 different cruises that collectively cover all sectors of the Southern Ocean. The N isotope effect estimated using nitrate + nitrite δ15N is relatively constant (5.5 ± 0.6‰) across the Antarctic Zone, shows no relationship with mixed layer depth, and is in agreement with sediment trap δ15N measurements. Estimates of the N isotope effect derived from nitrate-only δ15N are higher and more variable (7.9 ± 1.5‰), consistent with an artifact from nitrate-nitrite isotope exchange. In the case of the Southern Ocean, we conclude that the δ15N of nitrate + nitrite better reflects the isotope effect of nitrate assimilation. The stability of this isotope effect across the Antarctic Zone simplifies the effort to ... Article in Journal/Newspaper Antarc* Antarctic Southern Ocean University of Basel: edoc Antarctic Southern Ocean The Antarctic Geochimica et Cosmochimica Acta 247 261 279
institution Open Polar
collection University of Basel: edoc
op_collection_id ftunivbasel
language unknown
description Both the nitrogen (N) isotopic composition (δ15N) of the nitrate source and the magnitude of isotope discrimination associated with nitrate assimilation are required to estimate the degree of past nitrate consumption from the δ15N of organic matter in Southern Ocean sediments (e.g., preserved within diatom microfossils). It has been suggested that the amplitude of isotope discrimination (i.e. the isotope effect) correlates with mixed layer depth, driven by a physiological response of phytoplankton to light availability, which introduces complexity to the interpretation of sedimentary records. However, most of the isotope effect estimates that underpin this hypothesis derive from acid-preserved water samples, from which nitrite would have been volatilized and lost during storage. Nitrite δ15N in Antarctic Zone surface waters is extremely low (−61 ± 20‰), consistent with the expression of an equilibrium isotope effect associated with nitrate–nitrite interconversion. Its loss from the combined nitrate + nitrite pool would act to raise the δ15N of nitrate, potentially yielding overestimation of the isotope effect. Here, we revisit the nitrate assimilation isotope effect in the Antarctic Zone with measurements of the δ15N and concentration of nitrate with and without nitrite, using frozen sea water samples from 5 different cruises that collectively cover all sectors of the Southern Ocean. The N isotope effect estimated using nitrate + nitrite δ15N is relatively constant (5.5 ± 0.6‰) across the Antarctic Zone, shows no relationship with mixed layer depth, and is in agreement with sediment trap δ15N measurements. Estimates of the N isotope effect derived from nitrate-only δ15N are higher and more variable (7.9 ± 1.5‰), consistent with an artifact from nitrate-nitrite isotope exchange. In the case of the Southern Ocean, we conclude that the δ15N of nitrate + nitrite better reflects the isotope effect of nitrate assimilation. The stability of this isotope effect across the Antarctic Zone simplifies the effort to ...
format Article in Journal/Newspaper
author Fripiat, François
Martinez-Garcia, Alfredo
Fawcett, Sarah E.
Kemeny, Preston C.
Studer, Anja S.
Smart, Sandi M.
Rubach, Florian
Oleynik, Sergey
Sigman, Daniel M.
Haug, Gerald H.
spellingShingle Fripiat, François
Martinez-Garcia, Alfredo
Fawcett, Sarah E.
Kemeny, Preston C.
Studer, Anja S.
Smart, Sandi M.
Rubach, Florian
Oleynik, Sergey
Sigman, Daniel M.
Haug, Gerald H.
The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications
author_facet Fripiat, François
Martinez-Garcia, Alfredo
Fawcett, Sarah E.
Kemeny, Preston C.
Studer, Anja S.
Smart, Sandi M.
Rubach, Florian
Oleynik, Sergey
Sigman, Daniel M.
Haug, Gerald H.
author_sort Fripiat, François
title The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications
title_short The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications
title_full The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications
title_fullStr The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications
title_full_unstemmed The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications
title_sort isotope effect of nitrate assimilation in the antarctic zone: improved estimates and paleoceanographic implications
publisher Elsevier
publishDate 2019
url https://edoc.unibas.ch/68640/
https://doi.org/10.1016/j.gca.2018.12.003
geographic Antarctic
Southern Ocean
The Antarctic
geographic_facet Antarctic
Southern Ocean
The Antarctic
genre Antarc*
Antarctic
Southern Ocean
genre_facet Antarc*
Antarctic
Southern Ocean
op_relation Fripiat, François and Martinez-Garcia, Alfredo and Fawcett, Sarah E. and Kemeny, Preston C. and Studer, Anja S. and Smart, Sandi M. and Rubach, Florian and Oleynik, Sergey and Sigman, Daniel M. and Haug, Gerald H. (2019) The isotope effect of nitrate assimilation in the Antarctic Zone: Improved estimates and paleoceanographic implications. Geochimica et Cosmochimica Acta, 247. pp. 261-279.
doi:10.1016/j.gca.2018.12.003
urn:ISSN:0016-7037
urn:ISSN:1872-9533
op_rights info:eu-repo/semantics/closedAccess
op_doi https://doi.org/10.1016/j.gca.2018.12.003
container_title Geochimica et Cosmochimica Acta
container_volume 247
container_start_page 261
op_container_end_page 279
_version_ 1766277095358464000