Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions
International audience The Kerguelen Islands are part of the French Southern Territories, located at the limit of the Indian and Southern oceans. They are highly impacted by climate change, and coastal marine areas are particularly at risk. Assessing the responses of species and populations to envir...
Published in: | Ecological Modelling |
---|---|
Main Authors: | , , , , |
Other Authors: | , , , , , , , |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
HAL CCSD
2021
|
Subjects: | |
Online Access: | https://hal.science/hal-03018516 https://hal.science/hal-03018516/document https://hal.science/hal-03018516/file/S030438002030418X.pdf https://doi.org/10.1016/j.ecolmodel.2020.109352 |
id |
ftunivavignon:oai:HAL:hal-03018516v1 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Université d'Avignon et des Pays de Vaucluse: HAL |
op_collection_id |
ftunivavignon |
language |
English |
topic |
Kerguelen Climate change Model sensitivity Endemic echinoderm Dynamic energy budget Individual-based model [SDE.BE]Environmental Sciences/Biodiversity and Ecology |
spellingShingle |
Kerguelen Climate change Model sensitivity Endemic echinoderm Dynamic energy budget Individual-based model [SDE.BE]Environmental Sciences/Biodiversity and Ecology Arnould-Pétré, Margot Guillaumot, Charlène Danis, Bruno Féral, Jean-Pierre Saucède, Thomas Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions |
topic_facet |
Kerguelen Climate change Model sensitivity Endemic echinoderm Dynamic energy budget Individual-based model [SDE.BE]Environmental Sciences/Biodiversity and Ecology |
description |
International audience The Kerguelen Islands are part of the French Southern Territories, located at the limit of the Indian and Southern oceans. They are highly impacted by climate change, and coastal marine areas are particularly at risk. Assessing the responses of species and populations to environmental change is challenging in such areas for which ecological modelling can constitute a helpful approach. In the present work, a DEB-IBM model (Dynamic Energy Budget – Individual-Based Model) was generated to simulate and predict population dynamics in an endemic and common benthic species of shallow marine habitats of the Kerguelen Islands, the sea urchin Abatus cordatus. The model relies on a dynamic energy budget model (DEB) developed at the individual level. Upscaled to anindividual-based population model (IBM), it then enables to model population dynamics through time as a result of individual physiological responses to environmental variations. The model was successfully built for a reference site to simulate the response of populations to variations in food resources and temperature. Then, it was implemented to model population dynamics at other sites and for the different IPCC climate change scenarios RCP 2.6 and 8.5. Under present-day conditions, models predict a more determinant effect of food resources on population densities, and on juvenile densities in particular, relative to temperature. In contrast, simulations predict a sharp decline in population densities under conditions of IPCC scenarios RCP 2.6 and RCP 8.5 with a determinant effect of water warming leading to the extinction of most vulnerable populations after a 30-year simulation time due to high mortality levels associated with peaks of high temperatures. Such a dynamic model is here applied for the first time to a Southern Ocean benthic and brooding species and offers interesting prospects for Antarctic and sub-Antarctic biodiversity research. It could constitute a useful tool to support conservation studies in these remote regions ... |
author2 |
Biogéosciences UMR 6282 (BGS) Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) Laboratoire de Biologie Marine Université libre de Bruxelles (ULB) Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement IRD : UMR237-Centre National de la Recherche Scientifique (CNRS) IPEV programme PROTEKER (No.1044), French LTER Zone ATelier Antarctique (ZATA), Belgian Science Policy Office (BELSPO, contract n◦BR/132/A1/vERSO), contribution no. 13 to the “Refugia and Ecosystem Tolerance in the Southern Ocean” project (RECTO; BR/154/A1/RECTO) funded by the Belgian Science Policy Office (BELSPO), French Foundation for Research on Biodiversity and its partners (FRB - www.fondationbiodiversite.fr), “Fonds pour la formation `a la Recherche dans l’Industrie et l’Agriculture” (FRIA) and « Bourse fondation de la mer » IPEV programme PROTEKER (No.1044) |
format |
Article in Journal/Newspaper |
author |
Arnould-Pétré, Margot Guillaumot, Charlène Danis, Bruno Féral, Jean-Pierre Saucède, Thomas |
author_facet |
Arnould-Pétré, Margot Guillaumot, Charlène Danis, Bruno Féral, Jean-Pierre Saucède, Thomas |
author_sort |
Arnould-Pétré, Margot |
title |
Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions |
title_short |
Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions |
title_full |
Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions |
title_fullStr |
Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions |
title_full_unstemmed |
Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions |
title_sort |
individual-based model of population dynamics in a sea urchin of the kerguelen plateau (southern ocean), abatus cordatus, under changing environmental conditions |
publisher |
HAL CCSD |
publishDate |
2021 |
url |
https://hal.science/hal-03018516 https://hal.science/hal-03018516/document https://hal.science/hal-03018516/file/S030438002030418X.pdf https://doi.org/10.1016/j.ecolmodel.2020.109352 |
genre |
Antarc* Antarctic Kerguelen Islands Southern Ocean |
genre_facet |
Antarc* Antarctic Kerguelen Islands Southern Ocean |
op_source |
ISSN: 0304-3800 EISSN: 1872-7026 Ecological Modelling https://hal.science/hal-03018516 Ecological Modelling, 2021, 440, pp.109352. ⟨10.1016/j.ecolmodel.2020.109352⟩ |
op_relation |
info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolmodel.2020.109352 hal-03018516 https://hal.science/hal-03018516 https://hal.science/hal-03018516/document https://hal.science/hal-03018516/file/S030438002030418X.pdf doi:10.1016/j.ecolmodel.2020.109352 PII: S0304-3800(20)30418-X |
op_rights |
http://creativecommons.org/licenses/by-nc/ info:eu-repo/semantics/OpenAccess |
op_doi |
https://doi.org/10.1016/j.ecolmodel.2020.109352 |
container_title |
Ecological Modelling |
container_volume |
440 |
container_start_page |
109352 |
_version_ |
1810492050223661056 |
spelling |
ftunivavignon:oai:HAL:hal-03018516v1 2024-09-15T17:44:27+00:00 Individual-based model of population dynamics in a sea urchin of the Kerguelen Plateau (Southern Ocean), Abatus cordatus, under changing environmental conditions Arnould-Pétré, Margot Guillaumot, Charlène Danis, Bruno Féral, Jean-Pierre Saucède, Thomas Biogéosciences UMR 6282 (BGS) Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS) Laboratoire de Biologie Marine Université libre de Bruxelles (ULB) Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement IRD : UMR237-Centre National de la Recherche Scientifique (CNRS) IPEV programme PROTEKER (No.1044), French LTER Zone ATelier Antarctique (ZATA), Belgian Science Policy Office (BELSPO, contract n◦BR/132/A1/vERSO), contribution no. 13 to the “Refugia and Ecosystem Tolerance in the Southern Ocean” project (RECTO; BR/154/A1/RECTO) funded by the Belgian Science Policy Office (BELSPO), French Foundation for Research on Biodiversity and its partners (FRB - www.fondationbiodiversite.fr), “Fonds pour la formation `a la Recherche dans l’Industrie et l’Agriculture” (FRIA) and « Bourse fondation de la mer » IPEV programme PROTEKER (No.1044) 2021-01-15 https://hal.science/hal-03018516 https://hal.science/hal-03018516/document https://hal.science/hal-03018516/file/S030438002030418X.pdf https://doi.org/10.1016/j.ecolmodel.2020.109352 en eng HAL CCSD Elsevier info:eu-repo/semantics/altIdentifier/doi/10.1016/j.ecolmodel.2020.109352 hal-03018516 https://hal.science/hal-03018516 https://hal.science/hal-03018516/document https://hal.science/hal-03018516/file/S030438002030418X.pdf doi:10.1016/j.ecolmodel.2020.109352 PII: S0304-3800(20)30418-X http://creativecommons.org/licenses/by-nc/ info:eu-repo/semantics/OpenAccess ISSN: 0304-3800 EISSN: 1872-7026 Ecological Modelling https://hal.science/hal-03018516 Ecological Modelling, 2021, 440, pp.109352. ⟨10.1016/j.ecolmodel.2020.109352⟩ Kerguelen Climate change Model sensitivity Endemic echinoderm Dynamic energy budget Individual-based model [SDE.BE]Environmental Sciences/Biodiversity and Ecology info:eu-repo/semantics/article Journal articles 2021 ftunivavignon https://doi.org/10.1016/j.ecolmodel.2020.109352 2024-07-22T23:40:07Z International audience The Kerguelen Islands are part of the French Southern Territories, located at the limit of the Indian and Southern oceans. They are highly impacted by climate change, and coastal marine areas are particularly at risk. Assessing the responses of species and populations to environmental change is challenging in such areas for which ecological modelling can constitute a helpful approach. In the present work, a DEB-IBM model (Dynamic Energy Budget – Individual-Based Model) was generated to simulate and predict population dynamics in an endemic and common benthic species of shallow marine habitats of the Kerguelen Islands, the sea urchin Abatus cordatus. The model relies on a dynamic energy budget model (DEB) developed at the individual level. Upscaled to anindividual-based population model (IBM), it then enables to model population dynamics through time as a result of individual physiological responses to environmental variations. The model was successfully built for a reference site to simulate the response of populations to variations in food resources and temperature. Then, it was implemented to model population dynamics at other sites and for the different IPCC climate change scenarios RCP 2.6 and 8.5. Under present-day conditions, models predict a more determinant effect of food resources on population densities, and on juvenile densities in particular, relative to temperature. In contrast, simulations predict a sharp decline in population densities under conditions of IPCC scenarios RCP 2.6 and RCP 8.5 with a determinant effect of water warming leading to the extinction of most vulnerable populations after a 30-year simulation time due to high mortality levels associated with peaks of high temperatures. Such a dynamic model is here applied for the first time to a Southern Ocean benthic and brooding species and offers interesting prospects for Antarctic and sub-Antarctic biodiversity research. It could constitute a useful tool to support conservation studies in these remote regions ... Article in Journal/Newspaper Antarc* Antarctic Kerguelen Islands Southern Ocean Université d'Avignon et des Pays de Vaucluse: HAL Ecological Modelling 440 109352 |