Geoinformation Modelling of Forest Fire Risk in the Sakha Republic (Yakutia)

International audience This article describes forest fires in Yakutia as one of the main types of natural hazards, as well as the factors of their occurrence and proposes methods of geoinformation modeling of forest fire risk in the Republic of Sakha (Yakutia). Forests of Yakutia occupy a significan...

Full description

Bibliographic Details
Published in:Успехи современного естествознания (Advances in Current Natural Sciences)
Main Authors: Janiec, Pior, Gadal, Sébastien, Ivanova, Svetlana
Other Authors: Aix Marseille Université (AMU), Études des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE), Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA), North-Eastern Federal University
Format: Article in Journal/Newspaper
Language:Russian
Published: HAL CCSD 2019
Subjects:
GIS
Online Access:https://hal.science/hal-02408358
https://hal.science/hal-02408358/document
https://hal.science/hal-02408358/file/37237.pdf
https://doi.org/10.17513/use.37237
id ftunivavignon:oai:HAL:hal-02408358v1
record_format openpolar
institution Open Polar
collection Université d'Avignon et des Pays de Vaucluse: HAL
op_collection_id ftunivavignon
language Russian
topic Spatial Modelling
MODIS
Remote Sensing
Forest fire risk
Forest fires
Fire forest forecast
GIS
Yakutia
Russia
Machine learning
NDVI
Artificial intelligence
Arctic
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
spellingShingle Spatial Modelling
MODIS
Remote Sensing
Forest fire risk
Forest fires
Fire forest forecast
GIS
Yakutia
Russia
Machine learning
NDVI
Artificial intelligence
Arctic
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
Janiec, Pior
Gadal, Sébastien
Ivanova, Svetlana
Geoinformation Modelling of Forest Fire Risk in the Sakha Republic (Yakutia)
topic_facet Spatial Modelling
MODIS
Remote Sensing
Forest fire risk
Forest fires
Fire forest forecast
GIS
Yakutia
Russia
Machine learning
NDVI
Artificial intelligence
Arctic
[INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV]
[SHS.STAT]Humanities and Social Sciences/Methods and statistics
[SDE.ES]Environmental Sciences/Environment and Society
[SHS.GEO]Humanities and Social Sciences/Geography
[INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation
description International audience This article describes forest fires in Yakutia as one of the main types of natural hazards, as well as the factors of their occurrence and proposes methods of geoinformation modeling of forest fire risk in the Republic of Sakha (Yakutia). Forests of Yakutia occupy a significant area. Forest fires annually cover an area of hundreds of thousands of hectares. The article analyzes the impact of various factors on the risk of forest fires using the linear correlation coefficient and the coefficient of determination. GIS modeling was used to predict the risk of forest fires. It was carried out in stages: the collection of different types of data and their integration into the GIS database, checking the impact of individual factors on the fire occurrence, assessing the risk of forest fires using artificial intelligence and machine learning. The study used global sources of fire information-the fire information management system (FMS). The data available in the service are collected from satellite systems and MODIS Collection 6 Active Fire Product, as well as VIIRS 375 m, 750 m. The article presents the results of assessing the impact of individual factors on the occurrence of forest fires. The analysis showed that the greatest influence was exerted by such factors as solar radiation, maximum temperature (July), NDVI index, altitude, slope, human factor (distance to roads, distance from settlements and rivers). The following artificial intelligence and machine learning methods were used to assess fire risk: random forest and maximum entropy methods. With the help of GIS modeling, geographical maps of the risk of forest fires in Yakutia were created. The maps highlight areas of very low, low, medium, high, very high and extremely high probability of forest fires. В данной статье рассматриваются лесные пожары в Якутии как один из основных видов стихийных угроз природного характера, а также факторы их возникновения и предлагаются методы геоинформационно-го моделирования риска лесных пожаров на ...
author2 Aix Marseille Université (AMU)
Études des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE)
Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA)
North-Eastern Federal University
format Article in Journal/Newspaper
author Janiec, Pior
Gadal, Sébastien
Ivanova, Svetlana
author_facet Janiec, Pior
Gadal, Sébastien
Ivanova, Svetlana
author_sort Janiec, Pior
title Geoinformation Modelling of Forest Fire Risk in the Sakha Republic (Yakutia)
title_short Geoinformation Modelling of Forest Fire Risk in the Sakha Republic (Yakutia)
title_full Geoinformation Modelling of Forest Fire Risk in the Sakha Republic (Yakutia)
title_fullStr Geoinformation Modelling of Forest Fire Risk in the Sakha Republic (Yakutia)
title_full_unstemmed Geoinformation Modelling of Forest Fire Risk in the Sakha Republic (Yakutia)
title_sort geoinformation modelling of forest fire risk in the sakha republic (yakutia)
publisher HAL CCSD
publishDate 2019
url https://hal.science/hal-02408358
https://hal.science/hal-02408358/document
https://hal.science/hal-02408358/file/37237.pdf
https://doi.org/10.17513/use.37237
geographic Arctic
Sakha
geographic_facet Arctic
Sakha
genre Arctic
Republic of Sakha
Sakha Republic
Yakutia
Саха
Якути*
Якутия
genre_facet Arctic
Republic of Sakha
Sakha Republic
Yakutia
Саха
Якути*
Якутия
op_source ISSN: 1681-7494
Успехи современного естествознания (Advances in Current Natural Sciences)
https://hal.science/hal-02408358
Успехи современного естествознания (Advances in Current Natural Sciences), 2019, 11 2019, pp.37-42. ⟨10.17513/use.37237⟩
http://www.natural-sciences.ru/en/article/view?id=37237
op_relation info:eu-repo/semantics/altIdentifier/doi/10.17513/use.37237
hal-02408358
https://hal.science/hal-02408358
https://hal.science/hal-02408358/document
https://hal.science/hal-02408358/file/37237.pdf
doi:10.17513/use.37237
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.17513/use.37237
container_title Успехи современного естествознания (Advances in Current Natural Sciences)
container_issue №11 2019
container_start_page 37
op_container_end_page 42
_version_ 1802641870889680896
spelling ftunivavignon:oai:HAL:hal-02408358v1 2024-06-23T07:50:55+00:00 Geoinformation Modelling of Forest Fire Risk in the Sakha Republic (Yakutia) Геоинформационное моделирование риска лесных пожаров в Республике Саха (Якутия) Janiec, Pior Gadal, Sébastien Ivanova, Svetlana Aix Marseille Université (AMU) Études des Structures, des Processus d’Adaptation et des Changements de l’Espace (ESPACE) Université Nice Sophia Antipolis (1965 - 2019) (UNS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UniCA) North-Eastern Federal University 2019-12-04 https://hal.science/hal-02408358 https://hal.science/hal-02408358/document https://hal.science/hal-02408358/file/37237.pdf https://doi.org/10.17513/use.37237 ru rus HAL CCSD info:eu-repo/semantics/altIdentifier/doi/10.17513/use.37237 hal-02408358 https://hal.science/hal-02408358 https://hal.science/hal-02408358/document https://hal.science/hal-02408358/file/37237.pdf doi:10.17513/use.37237 info:eu-repo/semantics/OpenAccess ISSN: 1681-7494 Успехи современного естествознания (Advances in Current Natural Sciences) https://hal.science/hal-02408358 Успехи современного естествознания (Advances in Current Natural Sciences), 2019, 11 2019, pp.37-42. ⟨10.17513/use.37237⟩ http://www.natural-sciences.ru/en/article/view?id=37237 Spatial Modelling MODIS Remote Sensing Forest fire risk Forest fires Fire forest forecast GIS Yakutia Russia Machine learning NDVI Artificial intelligence Arctic [INFO.INFO-TI]Computer Science [cs]/Image Processing [eess.IV] [SHS.STAT]Humanities and Social Sciences/Methods and statistics [SDE.ES]Environmental Sciences/Environment and Society [SHS.GEO]Humanities and Social Sciences/Geography [INFO.INFO-MO]Computer Science [cs]/Modeling and Simulation info:eu-repo/semantics/article Journal articles 2019 ftunivavignon https://doi.org/10.17513/use.37237 2024-06-10T23:49:39Z International audience This article describes forest fires in Yakutia as one of the main types of natural hazards, as well as the factors of their occurrence and proposes methods of geoinformation modeling of forest fire risk in the Republic of Sakha (Yakutia). Forests of Yakutia occupy a significant area. Forest fires annually cover an area of hundreds of thousands of hectares. The article analyzes the impact of various factors on the risk of forest fires using the linear correlation coefficient and the coefficient of determination. GIS modeling was used to predict the risk of forest fires. It was carried out in stages: the collection of different types of data and their integration into the GIS database, checking the impact of individual factors on the fire occurrence, assessing the risk of forest fires using artificial intelligence and machine learning. The study used global sources of fire information-the fire information management system (FMS). The data available in the service are collected from satellite systems and MODIS Collection 6 Active Fire Product, as well as VIIRS 375 m, 750 m. The article presents the results of assessing the impact of individual factors on the occurrence of forest fires. The analysis showed that the greatest influence was exerted by such factors as solar radiation, maximum temperature (July), NDVI index, altitude, slope, human factor (distance to roads, distance from settlements and rivers). The following artificial intelligence and machine learning methods were used to assess fire risk: random forest and maximum entropy methods. With the help of GIS modeling, geographical maps of the risk of forest fires in Yakutia were created. The maps highlight areas of very low, low, medium, high, very high and extremely high probability of forest fires. В данной статье рассматриваются лесные пожары в Якутии как один из основных видов стихийных угроз природного характера, а также факторы их возникновения и предлагаются методы геоинформационно-го моделирования риска лесных пожаров на ... Article in Journal/Newspaper Arctic Republic of Sakha Sakha Republic Yakutia Саха Якути* Якутия Université d'Avignon et des Pays de Vaucluse: HAL Arctic Sakha Успехи современного естествознания (Advances in Current Natural Sciences) №11 2019 37 42