Modeling and Measuring Water Level Fluctuations in the Greenland Ice Sheet: How Moulin Life Cycle and Shape can Inform us on the Subglacial Drainage System.

In the ablation zone of land terminating sectors of the Greenland Ice Sheet (GrIS), water pressures at the bed control ice motion variability on diurnal and seasonal timescales. During the melt season, large volumes of surface meltwater access the ice-bed interface through moulins.Moulins are large...

Full description

Bibliographic Details
Main Author: Trunz, Celia
Format: Text
Language:unknown
Published: ScholarWorks@UARK 2021
Subjects:
Online Access:https://scholarworks.uark.edu/etd/4126
https://scholarworks.uark.edu/context/etd/article/5676/viewcontent/Trunz_uark_0011A_14398.pdf
Description
Summary:In the ablation zone of land terminating sectors of the Greenland Ice Sheet (GrIS), water pressures at the bed control ice motion variability on diurnal and seasonal timescales. During the melt season, large volumes of surface meltwater access the ice-bed interface through moulins.Moulins are large vertical shafts that connect the supraglacial and subglacial drainage systems. Moulins form when a crevasse intersects a surface meltwater source that can drive hydrofracture to the bed of the ice sheet. Upon reaching the bed, meltwater can establish and sustain an efficient, channelized drainage system. Due to the technical impossibility of physically exploring underwater passages beneath the GrIS, the subglacial drainage system must be studied through geophysical methods. To date, measurements of water level variability within moulins and boreholes have proved to be critical for constraining models. However, direct hydrologic measurements from the GrIS are sparse, due to the remoteness and harsh conditions of the ice sheet. The work presented in this dissertation combines simple physically based mathematical models with direct measurements from the ablation portion of Sermeq Avannarleq, in west Greenland to advance our understanding of the influence of moulin geometry and life span on glacier dynamics. In Chapter 2, I investigate the moulin life cycle within several neighboring surface catchments within the GrIS ablation zone. A combination of remote sensing and ground observations of moulin locations over two to three years reveals an annual pattern of systematic formation and abandonment of moulins after they are advected down-glacier.In Chapter 3, I use a modified single conduit model to explore the role of moulin shape and size on hydraulic head variability within moulins. This model shows that only the englacial storage capacity within the range of water level fluctuations affects the oscillation range of moulin hydraulic head, which controls subglacial channel water pressure dynamics. Further, the model shows ...