Event reconstruction for KM3NeT/ORCA using convolutional neural networks

The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino...

Full description

Bibliographic Details
Published in:Journal of Instrumentation
Main Authors: Aiello, S., Bouwhuis, M., Bruijn, R., de Jong, P., van Eeden, T., van Eijk, D., Heijboer, A., Jung, B.J., Koffeman, E.N., Kooijman, P., Melis, K., Ó Fearraigh, B., Samtleben, D.F.E., Seneca, J., Steijger, J., de Wolf, E.
Format: Article in Journal/Newspaper
Language:English
Published: 2020
Subjects:
Online Access:https://dare.uva.nl/personal/pure/en/publications/event-reconstruction-for-km3netorca-using-convolutional-neural-networks(d72e6f52-624a-41f9-95d3-a6aee9101e04).html
https://doi.org/10.1088/1748-0221/15/10/P10005
https://hdl.handle.net/11245.1/d72e6f52-624a-41f9-95d3-a6aee9101e04
https://pure.uva.nl/ws/files/63123193/Aiello_2020_J._Inst._15_P10005.pdf
id ftunivamstpubl:oai:dare.uva.nl:openaire_cris_publications/d72e6f52-624a-41f9-95d3-a6aee9101e04
record_format openpolar
spelling ftunivamstpubl:oai:dare.uva.nl:openaire_cris_publications/d72e6f52-624a-41f9-95d3-a6aee9101e04 2024-10-06T13:51:56+00:00 Event reconstruction for KM3NeT/ORCA using convolutional neural networks Aiello, S. Bouwhuis, M. Bruijn, R. de Jong, P. van Eeden, T. van Eijk, D. Heijboer, A. Jung, B.J. Koffeman, E.N. Kooijman, P. Melis, K. Ó Fearraigh, B. Samtleben, D.F.E. Seneca, J. Steijger, J. de Wolf, E. 2020-10 application/pdf https://dare.uva.nl/personal/pure/en/publications/event-reconstruction-for-km3netorca-using-convolutional-neural-networks(d72e6f52-624a-41f9-95d3-a6aee9101e04).html https://doi.org/10.1088/1748-0221/15/10/P10005 https://hdl.handle.net/11245.1/d72e6f52-624a-41f9-95d3-a6aee9101e04 https://pure.uva.nl/ws/files/63123193/Aiello_2020_J._Inst._15_P10005.pdf eng eng https://dare.uva.nl/personal/pure/en/publications/event-reconstruction-for-km3netorca-using-convolutional-neural-networks(d72e6f52-624a-41f9-95d3-a6aee9101e04).html info:eu-repo/semantics/openAccess Aiello , S , Bouwhuis , M , Bruijn , R , de Jong , P , van Eeden , T , van Eijk , D , Heijboer , A , Jung , B J , Koffeman , E N , Kooijman , P , Melis , K , Ó Fearraigh , B , Samtleben , D F E , Seneca , J , Steijger , J , de Wolf , E 2020 , ' Event reconstruction for KM3NeT/ORCA using convolutional neural networks ' , Journal of Instrumentation , vol. 15 , no. 10 , P10005 . https://doi.org/10.1088/1748-0221/15/10/P10005 article 2020 ftunivamstpubl https://doi.org/10.1088/1748-0221/15/10/P10005 2024-09-12T16:38:39Z The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches. Article in Journal/Newspaper Orca Universiteit van Amsterdam: Digital Academic Repository (UvA DARE) Journal of Instrumentation 15 10 P10005 P10005
institution Open Polar
collection Universiteit van Amsterdam: Digital Academic Repository (UvA DARE)
op_collection_id ftunivamstpubl
language English
description The KM3NeT research infrastructure is currently under construction at two locations in the Mediterranean Sea. The KM3NeT/ORCA water-Cherenkov neutrino detector off the French coast will instrument several megatons of seawater with photosensors. Its main objective is the determination of the neutrino mass ordering. This work aims at demonstrating the general applicability of deep convolutional neural networks to neutrino telescopes, using simulated datasets for the KM3NeT/ORCA detector as an example. To this end, the networks are employed to achieve reconstruction and classification tasks that constitute an alternative to the analysis pipeline presented for KM3NeT/ORCA in the KM3NeT Letter of Intent. They are used to infer event reconstruction estimates for the energy, the direction, and the interaction point of incident neutrinos. The spatial distribution of Cherenkov light generated by charged particles induced in neutrino interactions is classified as shower- or track-like, and the main background processes associated with the detection of atmospheric neutrinos are recognized. Performance comparisons to machine-learning classification and maximum-likelihood reconstruction algorithms previously developed for KM3NeT/ORCA are provided. It is shown that this application of deep convolutional neural networks to simulated datasets for a large-volume neutrino telescope yields competitive reconstruction results and performance improvements with respect to classical approaches.
format Article in Journal/Newspaper
author Aiello, S.
Bouwhuis, M.
Bruijn, R.
de Jong, P.
van Eeden, T.
van Eijk, D.
Heijboer, A.
Jung, B.J.
Koffeman, E.N.
Kooijman, P.
Melis, K.
Ó Fearraigh, B.
Samtleben, D.F.E.
Seneca, J.
Steijger, J.
de Wolf, E.
spellingShingle Aiello, S.
Bouwhuis, M.
Bruijn, R.
de Jong, P.
van Eeden, T.
van Eijk, D.
Heijboer, A.
Jung, B.J.
Koffeman, E.N.
Kooijman, P.
Melis, K.
Ó Fearraigh, B.
Samtleben, D.F.E.
Seneca, J.
Steijger, J.
de Wolf, E.
Event reconstruction for KM3NeT/ORCA using convolutional neural networks
author_facet Aiello, S.
Bouwhuis, M.
Bruijn, R.
de Jong, P.
van Eeden, T.
van Eijk, D.
Heijboer, A.
Jung, B.J.
Koffeman, E.N.
Kooijman, P.
Melis, K.
Ó Fearraigh, B.
Samtleben, D.F.E.
Seneca, J.
Steijger, J.
de Wolf, E.
author_sort Aiello, S.
title Event reconstruction for KM3NeT/ORCA using convolutional neural networks
title_short Event reconstruction for KM3NeT/ORCA using convolutional neural networks
title_full Event reconstruction for KM3NeT/ORCA using convolutional neural networks
title_fullStr Event reconstruction for KM3NeT/ORCA using convolutional neural networks
title_full_unstemmed Event reconstruction for KM3NeT/ORCA using convolutional neural networks
title_sort event reconstruction for km3net/orca using convolutional neural networks
publishDate 2020
url https://dare.uva.nl/personal/pure/en/publications/event-reconstruction-for-km3netorca-using-convolutional-neural-networks(d72e6f52-624a-41f9-95d3-a6aee9101e04).html
https://doi.org/10.1088/1748-0221/15/10/P10005
https://hdl.handle.net/11245.1/d72e6f52-624a-41f9-95d3-a6aee9101e04
https://pure.uva.nl/ws/files/63123193/Aiello_2020_J._Inst._15_P10005.pdf
genre Orca
genre_facet Orca
op_source Aiello , S , Bouwhuis , M , Bruijn , R , de Jong , P , van Eeden , T , van Eijk , D , Heijboer , A , Jung , B J , Koffeman , E N , Kooijman , P , Melis , K , Ó Fearraigh , B , Samtleben , D F E , Seneca , J , Steijger , J , de Wolf , E 2020 , ' Event reconstruction for KM3NeT/ORCA using convolutional neural networks ' , Journal of Instrumentation , vol. 15 , no. 10 , P10005 . https://doi.org/10.1088/1748-0221/15/10/P10005
op_relation https://dare.uva.nl/personal/pure/en/publications/event-reconstruction-for-km3netorca-using-convolutional-neural-networks(d72e6f52-624a-41f9-95d3-a6aee9101e04).html
op_rights info:eu-repo/semantics/openAccess
op_doi https://doi.org/10.1088/1748-0221/15/10/P10005
container_title Journal of Instrumentation
container_volume 15
container_issue 10
container_start_page P10005
op_container_end_page P10005
_version_ 1812180258374287360