Marine biodiversity in space and time: What tiny fossils tell

Biodiversity has been changing both in space and time. For example, we have more species in the tropics and less species in the Arctic and Antarctic regions, constituting the latitudinal diversity gradient, one of the patterns we can see most consistently in this complex world. We know much less reg...

Full description

Bibliographic Details
Published in:Mètode Revista de difusió de la investigació
Main Author: Yasuhara, Moriaki
Format: Article in Journal/Newspaper
Language:English
Published: Universitat de València 2019
Subjects:
Online Access:https://ojs.uv.es/index.php/Metode/article/view/11404
https://doi.org/10.7203/metode.9.11404
id ftunivalenciaojs:oai:ojs.uv.es:article/11404
record_format openpolar
institution Open Polar
collection Universitat de València: Open Journal Systems
op_collection_id ftunivalenciaojs
language English
topic biodiversity
microfossils
ecology
evolution
paleontology
biogeography
microfòssils
ecologia
evolució
paleontologia
biogeografia
microfósiles
ecología
evolución
paleontología
biogeografía
spellingShingle biodiversity
microfossils
ecology
evolution
paleontology
biogeography
microfòssils
ecologia
evolució
paleontologia
biogeografia
microfósiles
ecología
evolución
paleontología
biogeografía
Yasuhara, Moriaki
Marine biodiversity in space and time: What tiny fossils tell
topic_facet biodiversity
microfossils
ecology
evolution
paleontology
biogeography
microfòssils
ecologia
evolució
paleontologia
biogeografia
microfósiles
ecología
evolución
paleontología
biogeografía
description Biodiversity has been changing both in space and time. For example, we have more species in the tropics and less species in the Arctic and Antarctic regions, constituting the latitudinal diversity gradient, one of the patterns we can see most consistently in this complex world. We know much less regarding the biodiversity gradients with time. This is because it would require a well designed continuous monitoring program, which seldom persist beyond a few decades. But, luckily, we have remains of ancient organisms, called fossils. These are basically the only direct records of past biodiversity. La biodiversitat ha anat canviant tant en l’espai com en el temps. Per exemple, trobem més espècies en els tròpics i menys en la regió àrtica i l’antàrtica, seguint un gradient longitudinal de diversitat, un dels patrons que podem observar de manera més consistent en aquest món complex. El que sabem sobre els gradients temporals de biodiversitat és molt més limitat. Això ocorre perquè faria falta un programa de seguiment continu ben dissenyat, i aquests difícilment persisteixen més enllà d’unes dècades. Però, per sort, tenim restes d’antics organismes: els fòssils. Els fòssils són bàsicament l’únic registre directe de la biodiversitat passada. La biodiversidad ha ido cambiando tanto en el espacio como en el tiempo. Por ejemplo, encontramos más especies en los trópicos y menos en la región ártica y la antártica, siguiendo un gradiente latitudinal de diversidad, uno de los patrones que podemos observar de manera más consistente en este mundo complejo. Lo que sabemos sobre los gradientes temporales de biodiversidad es mucho más limitado. Esto ocurre porque haría falta un programa de seguimiento continuo bien diseñado, y estos difícilmente persisten más allá de unas décadas. Pero, por suerte, tenemos restos de antiguos organismos: los fósiles. Los fósiles son básicamente el único registro directo de la biodiversidad pasada.
format Article in Journal/Newspaper
author Yasuhara, Moriaki
author_facet Yasuhara, Moriaki
author_sort Yasuhara, Moriaki
title Marine biodiversity in space and time: What tiny fossils tell
title_short Marine biodiversity in space and time: What tiny fossils tell
title_full Marine biodiversity in space and time: What tiny fossils tell
title_fullStr Marine biodiversity in space and time: What tiny fossils tell
title_full_unstemmed Marine biodiversity in space and time: What tiny fossils tell
title_sort marine biodiversity in space and time: what tiny fossils tell
publisher Universitat de València
publishDate 2019
url https://ojs.uv.es/index.php/Metode/article/view/11404
https://doi.org/10.7203/metode.9.11404
long_lat ENVELOPE(17.421,17.421,66.587,66.587)
ENVELOPE(-56.866,-56.866,-64.300,-64.300)
geographic Allá
Antarctic
Arctic
Fósiles
geographic_facet Allá
Antarctic
Arctic
Fósiles
genre Antarc*
Antarctic
Antártica
Arctic
genre_facet Antarc*
Antarctic
Antártica
Arctic
op_source .; The grounds of science (2019); 77-81
2174-9221
2174-3487
op_relation https://ojs.uv.es/index.php/Metode/article/view/11404/14238
https://ojs.uv.es/index.php/Metode/article/downloadSuppFile/11404/5267
Bellwood, D. R., Renema, W., & Rosen, B. R. (2012). Biodiversity hotspots, evolution and coral reef biogeography: A review. In D. J. Gower, K. G. Johnson, J. E. Richardson, B. R. Rosen, L. Rüber, & S. T. Williams (Eds.), Biotic evolution and environmental change in Southeast Asia (pp. 216–245). Cambridge: Cambridge University Press. Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., … Zhang, J. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359 (6371), eaam7240. doi: 10.1126/science.aam7240 Cronin, T. M., & Raymo, M. E. (1997). Orbital forcing of deep-sea benthic species diversity. Nature, 385 , 624–627. doi: 10.1038/385624a0 Hillebrand, H. (2004). Strength, slope and variability of marine latitudinal gradients. Marine Ecology Progress Series, 273 , 251–267. doi: 10.3354/meps273251 Ingels, J., Clark, M. R., Vecchione, M., Perez, J. A. A., Levin, L. A., Priede, I. G., … Van Gaever, S. (2016). Chapter 36F. Open Ocean Deep Sea. In L. Inniss & Simcock (Eds.), First global integrated marine assessment . World ocean assessment I . New York, NY: United Nations. Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., … Warner, R. R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293 (5530), 629-638. doi: 10.1126/science.1059199 Mesquita-Joanes, F., Smith, A. J., & Viehberg, F. A. (2012). The ecology of Ostracoda across levels of biological organisation from individual to ecosystem: A review of recent developments and future potential. In D. J. Horne, J. Holmes, J. Rodriguez-Lazaro, & F. A. Viehberg (Eds.), Ostracoda as proxies for Quaternary climate change (pp. 15–35). Amsterdam: Elsevier. Mora, C., Wei, C. L., Rollo, A., Amaro, T., Baco, A. R., Billett, D., . Yasuhara, M. (2013). Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biology, 11 (10), e1001682. doi: 10.1371/journal.pbio.1001682 Renema, W., Bellwood, D. R., Braga, J. C., Bromfield, K., Hall, R., Johnson, K. G., … Pandolfi, J. M. (2008). Hopping hotspots: Global shifts in marine biodiversity. Science, 321 (5889), 654–657. doi: 10.1126/science.1155674 Rex, M. A., & Etter, R. J. (2010). Deep-sea biodiversity: Pattern and scale . Cambridge: Harvard University Press. Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E. V., & Worm, B. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature, 466 , 1098-1101. doi: 10.1038/nature09329 Yasuhara, M., & Cronin, T. M. (2008). Climatic influences on deep-sea ostracode (Crustacea) diversity for the last three million years. Ecology, 89 (11), S53–S65. doi: 10.1890/07-1021.1 Yasuhara, M., Cronin, T. M., DeMenocal, P. B., Okahashi, H., & Linsley, B. K. (2008). Abrupt climate change and collapse of deep-sea ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 105 (5), 1556–1560. doi: 10.1073/pnas.0705486105 Yasuhara, M., & Danovaro, R. (2016). Temperature impacts on deep-sea biodiversity. Biological Reviews, 91 (2), 275–287. doi: 10.1111/brv.12169 Yasuhara, M., Doi, H., Wei, C. L., Danovaro, R., & Myhre, S. E. (2016). Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: Deep sea as a test bed. Philosophical Transactions of the Royal Society B, 371 (1694). doi: 10.1098/rstb.2015.0282 Yasuhara, M., Hunt, G., Cronin, T. M., & Okahashi, H. (2009). Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proceedings of the National Academy of Sciences of the United States of America, 106 (51), 21717–21720. doi: 10.1073/pnas.0910935106 Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M., & Stoll, D. K. (2012). Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecology Letters, 15 (10), 1174–1179. doi: 10.1111/j.1461-0248.2012.01828.x Yasuhara, M., Iwatani, H., Hunt, G., Okahashi, H., Kase, T., Hayashi, H., … Renema, W. (2017). Cenozoic dynamics of shallow-marine biodiversity in the Western Pacific. Journal of Biogeography, 44 (3), 567–578. doi: 10.1111/jbi.12880 Yasuhara, M., Okahashi, H., Cronin, T. M., Rasmussen, T. L., & Hunt, G. (2014). Response of deep-sea biodiversity to abrupt deglacial and Holocene climate changes in the North Atlantic Ocean. Global Ecology and Biogeography, 23 (9), 957–967. doi: 10.1111/geb.12178 Yasuhara, M., Tittensor, D. P., Hillebrand, H., & Worm, B. (2017). Combining marine macroecology and palaeoecology in understanding biodiversity: Microfossils as a model. Biological Reviews, 92 (1), 199–215. doi: 10.1111/brv.12223
https://ojs.uv.es/index.php/Metode/article/view/11404
doi:10.7203/metode.9.11404
op_rights Copyright (c) 2018 Mètode Science Studies Journal - Annual Review
op_doi https://doi.org/10.7203/metode.9.11404
container_title Mètode Revista de difusió de la investigació
container_issue 9
_version_ 1766278593725333504
spelling ftunivalenciaojs:oai:ojs.uv.es:article/11404 2023-05-15T14:06:36+02:00 Marine biodiversity in space and time: What tiny fossils tell Biodiversitat marina en el temps i l’espai: Allò que ens diuen els fòssils minúsculs Biodiversidad marina en el tiempo y el espacio: Lo que nos cuentan los fósiles minúsculos Yasuhara, Moriaki 2019-03-06 application/pdf https://ojs.uv.es/index.php/Metode/article/view/11404 https://doi.org/10.7203/metode.9.11404 eng eng Universitat de València https://ojs.uv.es/index.php/Metode/article/view/11404/14238 https://ojs.uv.es/index.php/Metode/article/downloadSuppFile/11404/5267 Bellwood, D. R., Renema, W., & Rosen, B. R. (2012). Biodiversity hotspots, evolution and coral reef biogeography: A review. In D. J. Gower, K. G. Johnson, J. E. Richardson, B. R. Rosen, L. Rüber, & S. T. Williams (Eds.), Biotic evolution and environmental change in Southeast Asia (pp. 216–245). Cambridge: Cambridge University Press. Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., … Zhang, J. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359 (6371), eaam7240. doi: 10.1126/science.aam7240 Cronin, T. M., & Raymo, M. E. (1997). Orbital forcing of deep-sea benthic species diversity. Nature, 385 , 624–627. doi: 10.1038/385624a0 Hillebrand, H. (2004). Strength, slope and variability of marine latitudinal gradients. Marine Ecology Progress Series, 273 , 251–267. doi: 10.3354/meps273251 Ingels, J., Clark, M. R., Vecchione, M., Perez, J. A. A., Levin, L. A., Priede, I. G., … Van Gaever, S. (2016). Chapter 36F. Open Ocean Deep Sea. In L. Inniss & Simcock (Eds.), First global integrated marine assessment . World ocean assessment I . New York, NY: United Nations. Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., … Warner, R. R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293 (5530), 629-638. doi: 10.1126/science.1059199 Mesquita-Joanes, F., Smith, A. J., & Viehberg, F. A. (2012). The ecology of Ostracoda across levels of biological organisation from individual to ecosystem: A review of recent developments and future potential. In D. J. Horne, J. Holmes, J. Rodriguez-Lazaro, & F. A. Viehberg (Eds.), Ostracoda as proxies for Quaternary climate change (pp. 15–35). Amsterdam: Elsevier. Mora, C., Wei, C. L., Rollo, A., Amaro, T., Baco, A. R., Billett, D., . Yasuhara, M. (2013). Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biology, 11 (10), e1001682. doi: 10.1371/journal.pbio.1001682 Renema, W., Bellwood, D. R., Braga, J. C., Bromfield, K., Hall, R., Johnson, K. G., … Pandolfi, J. M. (2008). Hopping hotspots: Global shifts in marine biodiversity. Science, 321 (5889), 654–657. doi: 10.1126/science.1155674 Rex, M. A., & Etter, R. J. (2010). Deep-sea biodiversity: Pattern and scale . Cambridge: Harvard University Press. Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E. V., & Worm, B. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature, 466 , 1098-1101. doi: 10.1038/nature09329 Yasuhara, M., & Cronin, T. M. (2008). Climatic influences on deep-sea ostracode (Crustacea) diversity for the last three million years. Ecology, 89 (11), S53–S65. doi: 10.1890/07-1021.1 Yasuhara, M., Cronin, T. M., DeMenocal, P. B., Okahashi, H., & Linsley, B. K. (2008). Abrupt climate change and collapse of deep-sea ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 105 (5), 1556–1560. doi: 10.1073/pnas.0705486105 Yasuhara, M., & Danovaro, R. (2016). Temperature impacts on deep-sea biodiversity. Biological Reviews, 91 (2), 275–287. doi: 10.1111/brv.12169 Yasuhara, M., Doi, H., Wei, C. L., Danovaro, R., & Myhre, S. E. (2016). Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: Deep sea as a test bed. Philosophical Transactions of the Royal Society B, 371 (1694). doi: 10.1098/rstb.2015.0282 Yasuhara, M., Hunt, G., Cronin, T. M., & Okahashi, H. (2009). Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proceedings of the National Academy of Sciences of the United States of America, 106 (51), 21717–21720. doi: 10.1073/pnas.0910935106 Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M., & Stoll, D. K. (2012). Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecology Letters, 15 (10), 1174–1179. doi: 10.1111/j.1461-0248.2012.01828.x Yasuhara, M., Iwatani, H., Hunt, G., Okahashi, H., Kase, T., Hayashi, H., … Renema, W. (2017). Cenozoic dynamics of shallow-marine biodiversity in the Western Pacific. Journal of Biogeography, 44 (3), 567–578. doi: 10.1111/jbi.12880 Yasuhara, M., Okahashi, H., Cronin, T. M., Rasmussen, T. L., & Hunt, G. (2014). Response of deep-sea biodiversity to abrupt deglacial and Holocene climate changes in the North Atlantic Ocean. Global Ecology and Biogeography, 23 (9), 957–967. doi: 10.1111/geb.12178 Yasuhara, M., Tittensor, D. P., Hillebrand, H., & Worm, B. (2017). Combining marine macroecology and palaeoecology in understanding biodiversity: Microfossils as a model. Biological Reviews, 92 (1), 199–215. doi: 10.1111/brv.12223 https://ojs.uv.es/index.php/Metode/article/view/11404 doi:10.7203/metode.9.11404 Copyright (c) 2018 Mètode Science Studies Journal - Annual Review .; The grounds of science (2019); 77-81 2174-9221 2174-3487 biodiversity microfossils ecology evolution paleontology biogeography microfòssils ecologia evolució paleontologia biogeografia microfósiles ecología evolución paleontología biogeografía info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion "Peer-reviewed Article" 2019 ftunivalenciaojs https://doi.org/10.7203/metode.9.11404 2023-02-09T18:25:34Z Biodiversity has been changing both in space and time. For example, we have more species in the tropics and less species in the Arctic and Antarctic regions, constituting the latitudinal diversity gradient, one of the patterns we can see most consistently in this complex world. We know much less regarding the biodiversity gradients with time. This is because it would require a well designed continuous monitoring program, which seldom persist beyond a few decades. But, luckily, we have remains of ancient organisms, called fossils. These are basically the only direct records of past biodiversity. La biodiversitat ha anat canviant tant en l’espai com en el temps. Per exemple, trobem més espècies en els tròpics i menys en la regió àrtica i l’antàrtica, seguint un gradient longitudinal de diversitat, un dels patrons que podem observar de manera més consistent en aquest món complex. El que sabem sobre els gradients temporals de biodiversitat és molt més limitat. Això ocorre perquè faria falta un programa de seguiment continu ben dissenyat, i aquests difícilment persisteixen més enllà d’unes dècades. Però, per sort, tenim restes d’antics organismes: els fòssils. Els fòssils són bàsicament l’únic registre directe de la biodiversitat passada. La biodiversidad ha ido cambiando tanto en el espacio como en el tiempo. Por ejemplo, encontramos más especies en los trópicos y menos en la región ártica y la antártica, siguiendo un gradiente latitudinal de diversidad, uno de los patrones que podemos observar de manera más consistente en este mundo complejo. Lo que sabemos sobre los gradientes temporales de biodiversidad es mucho más limitado. Esto ocurre porque haría falta un programa de seguimiento continuo bien diseñado, y estos difícilmente persisten más allá de unas décadas. Pero, por suerte, tenemos restos de antiguos organismos: los fósiles. Los fósiles son básicamente el único registro directo de la biodiversidad pasada. Article in Journal/Newspaper Antarc* Antarctic Antártica Arctic Universitat de València: Open Journal Systems Allá ENVELOPE(17.421,17.421,66.587,66.587) Antarctic Arctic Fósiles ENVELOPE(-56.866,-56.866,-64.300,-64.300) Mètode Revista de difusió de la investigació 9