Marine biodiversity in space and time: What tiny fossils tell
Biodiversity has been changing both in space and time. For example, we have more species in the tropics and less species in the Arctic and Antarctic regions, constituting the latitudinal diversity gradient, one of the patterns we can see most consistently in this complex world. We know much less reg...
Published in: | Mètode Revista de difusió de la investigació |
---|---|
Main Author: | |
Format: | Article in Journal/Newspaper |
Language: | English |
Published: |
Universitat de València
2019
|
Subjects: | |
Online Access: | https://ojs.uv.es/index.php/Metode/article/view/11404 https://doi.org/10.7203/metode.9.11404 |
id |
ftunivalenciaojs:oai:ojs.uv.es:article/11404 |
---|---|
record_format |
openpolar |
institution |
Open Polar |
collection |
Universitat de València: Open Journal Systems |
op_collection_id |
ftunivalenciaojs |
language |
English |
topic |
biodiversity microfossils ecology evolution paleontology biogeography microfòssils ecologia evolució paleontologia biogeografia microfósiles ecología evolución paleontología biogeografía |
spellingShingle |
biodiversity microfossils ecology evolution paleontology biogeography microfòssils ecologia evolució paleontologia biogeografia microfósiles ecología evolución paleontología biogeografía Yasuhara, Moriaki Marine biodiversity in space and time: What tiny fossils tell |
topic_facet |
biodiversity microfossils ecology evolution paleontology biogeography microfòssils ecologia evolució paleontologia biogeografia microfósiles ecología evolución paleontología biogeografía |
description |
Biodiversity has been changing both in space and time. For example, we have more species in the tropics and less species in the Arctic and Antarctic regions, constituting the latitudinal diversity gradient, one of the patterns we can see most consistently in this complex world. We know much less regarding the biodiversity gradients with time. This is because it would require a well designed continuous monitoring program, which seldom persist beyond a few decades. But, luckily, we have remains of ancient organisms, called fossils. These are basically the only direct records of past biodiversity. La biodiversitat ha anat canviant tant en l’espai com en el temps. Per exemple, trobem més espècies en els tròpics i menys en la regió àrtica i l’antàrtica, seguint un gradient longitudinal de diversitat, un dels patrons que podem observar de manera més consistent en aquest món complex. El que sabem sobre els gradients temporals de biodiversitat és molt més limitat. Això ocorre perquè faria falta un programa de seguiment continu ben dissenyat, i aquests difícilment persisteixen més enllà d’unes dècades. Però, per sort, tenim restes d’antics organismes: els fòssils. Els fòssils són bàsicament l’únic registre directe de la biodiversitat passada. La biodiversidad ha ido cambiando tanto en el espacio como en el tiempo. Por ejemplo, encontramos más especies en los trópicos y menos en la región ártica y la antártica, siguiendo un gradiente latitudinal de diversidad, uno de los patrones que podemos observar de manera más consistente en este mundo complejo. Lo que sabemos sobre los gradientes temporales de biodiversidad es mucho más limitado. Esto ocurre porque haría falta un programa de seguimiento continuo bien diseñado, y estos difícilmente persisten más allá de unas décadas. Pero, por suerte, tenemos restos de antiguos organismos: los fósiles. Los fósiles son básicamente el único registro directo de la biodiversidad pasada. |
format |
Article in Journal/Newspaper |
author |
Yasuhara, Moriaki |
author_facet |
Yasuhara, Moriaki |
author_sort |
Yasuhara, Moriaki |
title |
Marine biodiversity in space and time: What tiny fossils tell |
title_short |
Marine biodiversity in space and time: What tiny fossils tell |
title_full |
Marine biodiversity in space and time: What tiny fossils tell |
title_fullStr |
Marine biodiversity in space and time: What tiny fossils tell |
title_full_unstemmed |
Marine biodiversity in space and time: What tiny fossils tell |
title_sort |
marine biodiversity in space and time: what tiny fossils tell |
publisher |
Universitat de València |
publishDate |
2019 |
url |
https://ojs.uv.es/index.php/Metode/article/view/11404 https://doi.org/10.7203/metode.9.11404 |
long_lat |
ENVELOPE(17.421,17.421,66.587,66.587) ENVELOPE(-56.866,-56.866,-64.300,-64.300) |
geographic |
Allá Antarctic Arctic Fósiles |
geographic_facet |
Allá Antarctic Arctic Fósiles |
genre |
Antarc* Antarctic Antártica Arctic |
genre_facet |
Antarc* Antarctic Antártica Arctic |
op_source |
.; The grounds of science (2019); 77-81 2174-9221 2174-3487 |
op_relation |
https://ojs.uv.es/index.php/Metode/article/view/11404/14238 https://ojs.uv.es/index.php/Metode/article/downloadSuppFile/11404/5267 Bellwood, D. R., Renema, W., & Rosen, B. R. (2012). Biodiversity hotspots, evolution and coral reef biogeography: A review. In D. J. Gower, K. G. Johnson, J. E. Richardson, B. R. Rosen, L. Rüber, & S. T. Williams (Eds.), Biotic evolution and environmental change in Southeast Asia (pp. 216–245). Cambridge: Cambridge University Press. Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., … Zhang, J. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359 (6371), eaam7240. doi: 10.1126/science.aam7240 Cronin, T. M., & Raymo, M. E. (1997). Orbital forcing of deep-sea benthic species diversity. Nature, 385 , 624–627. doi: 10.1038/385624a0 Hillebrand, H. (2004). Strength, slope and variability of marine latitudinal gradients. Marine Ecology Progress Series, 273 , 251–267. doi: 10.3354/meps273251 Ingels, J., Clark, M. R., Vecchione, M., Perez, J. A. A., Levin, L. A., Priede, I. G., … Van Gaever, S. (2016). Chapter 36F. Open Ocean Deep Sea. In L. Inniss & Simcock (Eds.), First global integrated marine assessment . World ocean assessment I . New York, NY: United Nations. Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., … Warner, R. R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293 (5530), 629-638. doi: 10.1126/science.1059199 Mesquita-Joanes, F., Smith, A. J., & Viehberg, F. A. (2012). The ecology of Ostracoda across levels of biological organisation from individual to ecosystem: A review of recent developments and future potential. In D. J. Horne, J. Holmes, J. Rodriguez-Lazaro, & F. A. Viehberg (Eds.), Ostracoda as proxies for Quaternary climate change (pp. 15–35). Amsterdam: Elsevier. Mora, C., Wei, C. L., Rollo, A., Amaro, T., Baco, A. R., Billett, D., . Yasuhara, M. (2013). Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biology, 11 (10), e1001682. doi: 10.1371/journal.pbio.1001682 Renema, W., Bellwood, D. R., Braga, J. C., Bromfield, K., Hall, R., Johnson, K. G., … Pandolfi, J. M. (2008). Hopping hotspots: Global shifts in marine biodiversity. Science, 321 (5889), 654–657. doi: 10.1126/science.1155674 Rex, M. A., & Etter, R. J. (2010). Deep-sea biodiversity: Pattern and scale . Cambridge: Harvard University Press. Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E. V., & Worm, B. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature, 466 , 1098-1101. doi: 10.1038/nature09329 Yasuhara, M., & Cronin, T. M. (2008). Climatic influences on deep-sea ostracode (Crustacea) diversity for the last three million years. Ecology, 89 (11), S53–S65. doi: 10.1890/07-1021.1 Yasuhara, M., Cronin, T. M., DeMenocal, P. B., Okahashi, H., & Linsley, B. K. (2008). Abrupt climate change and collapse of deep-sea ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 105 (5), 1556–1560. doi: 10.1073/pnas.0705486105 Yasuhara, M., & Danovaro, R. (2016). Temperature impacts on deep-sea biodiversity. Biological Reviews, 91 (2), 275–287. doi: 10.1111/brv.12169 Yasuhara, M., Doi, H., Wei, C. L., Danovaro, R., & Myhre, S. E. (2016). Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: Deep sea as a test bed. Philosophical Transactions of the Royal Society B, 371 (1694). doi: 10.1098/rstb.2015.0282 Yasuhara, M., Hunt, G., Cronin, T. M., & Okahashi, H. (2009). Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proceedings of the National Academy of Sciences of the United States of America, 106 (51), 21717–21720. doi: 10.1073/pnas.0910935106 Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M., & Stoll, D. K. (2012). Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecology Letters, 15 (10), 1174–1179. doi: 10.1111/j.1461-0248.2012.01828.x Yasuhara, M., Iwatani, H., Hunt, G., Okahashi, H., Kase, T., Hayashi, H., … Renema, W. (2017). Cenozoic dynamics of shallow-marine biodiversity in the Western Pacific. Journal of Biogeography, 44 (3), 567–578. doi: 10.1111/jbi.12880 Yasuhara, M., Okahashi, H., Cronin, T. M., Rasmussen, T. L., & Hunt, G. (2014). Response of deep-sea biodiversity to abrupt deglacial and Holocene climate changes in the North Atlantic Ocean. Global Ecology and Biogeography, 23 (9), 957–967. doi: 10.1111/geb.12178 Yasuhara, M., Tittensor, D. P., Hillebrand, H., & Worm, B. (2017). Combining marine macroecology and palaeoecology in understanding biodiversity: Microfossils as a model. Biological Reviews, 92 (1), 199–215. doi: 10.1111/brv.12223 https://ojs.uv.es/index.php/Metode/article/view/11404 doi:10.7203/metode.9.11404 |
op_rights |
Copyright (c) 2018 Mètode Science Studies Journal - Annual Review |
op_doi |
https://doi.org/10.7203/metode.9.11404 |
container_title |
Mètode Revista
de difusió de la
investigació |
container_issue |
9 |
_version_ |
1766278593725333504 |
spelling |
ftunivalenciaojs:oai:ojs.uv.es:article/11404 2023-05-15T14:06:36+02:00 Marine biodiversity in space and time: What tiny fossils tell Biodiversitat marina en el temps i l’espai: Allò que ens diuen els fòssils minúsculs Biodiversidad marina en el tiempo y el espacio: Lo que nos cuentan los fósiles minúsculos Yasuhara, Moriaki 2019-03-06 application/pdf https://ojs.uv.es/index.php/Metode/article/view/11404 https://doi.org/10.7203/metode.9.11404 eng eng Universitat de València https://ojs.uv.es/index.php/Metode/article/view/11404/14238 https://ojs.uv.es/index.php/Metode/article/downloadSuppFile/11404/5267 Bellwood, D. R., Renema, W., & Rosen, B. R. (2012). Biodiversity hotspots, evolution and coral reef biogeography: A review. In D. J. Gower, K. G. Johnson, J. E. Richardson, B. R. Rosen, L. Rüber, & S. T. Williams (Eds.), Biotic evolution and environmental change in Southeast Asia (pp. 216–245). Cambridge: Cambridge University Press. Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., … Zhang, J. (2018). Declining oxygen in the global ocean and coastal waters. Science, 359 (6371), eaam7240. doi: 10.1126/science.aam7240 Cronin, T. M., & Raymo, M. E. (1997). Orbital forcing of deep-sea benthic species diversity. Nature, 385 , 624–627. doi: 10.1038/385624a0 Hillebrand, H. (2004). Strength, slope and variability of marine latitudinal gradients. Marine Ecology Progress Series, 273 , 251–267. doi: 10.3354/meps273251 Ingels, J., Clark, M. R., Vecchione, M., Perez, J. A. A., Levin, L. A., Priede, I. G., … Van Gaever, S. (2016). Chapter 36F. Open Ocean Deep Sea. In L. Inniss & Simcock (Eds.), First global integrated marine assessment . World ocean assessment I . New York, NY: United Nations. Jackson, J. B. C., Kirby, M. X., Berger, W. H., Bjorndal, K. A., Botsford, L. W., Bourque, B. J., … Warner, R. R. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293 (5530), 629-638. doi: 10.1126/science.1059199 Mesquita-Joanes, F., Smith, A. J., & Viehberg, F. A. (2012). The ecology of Ostracoda across levels of biological organisation from individual to ecosystem: A review of recent developments and future potential. In D. J. Horne, J. Holmes, J. Rodriguez-Lazaro, & F. A. Viehberg (Eds.), Ostracoda as proxies for Quaternary climate change (pp. 15–35). Amsterdam: Elsevier. Mora, C., Wei, C. L., Rollo, A., Amaro, T., Baco, A. R., Billett, D., . Yasuhara, M. (2013). Biotic and human vulnerability to projected changes in ocean biogeochemistry over the 21st century. PLoS Biology, 11 (10), e1001682. doi: 10.1371/journal.pbio.1001682 Renema, W., Bellwood, D. R., Braga, J. C., Bromfield, K., Hall, R., Johnson, K. G., … Pandolfi, J. M. (2008). Hopping hotspots: Global shifts in marine biodiversity. Science, 321 (5889), 654–657. doi: 10.1126/science.1155674 Rex, M. A., & Etter, R. J. (2010). Deep-sea biodiversity: Pattern and scale . Cambridge: Harvard University Press. Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Berghe, E. V., & Worm, B. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature, 466 , 1098-1101. doi: 10.1038/nature09329 Yasuhara, M., & Cronin, T. M. (2008). Climatic influences on deep-sea ostracode (Crustacea) diversity for the last three million years. Ecology, 89 (11), S53–S65. doi: 10.1890/07-1021.1 Yasuhara, M., Cronin, T. M., DeMenocal, P. B., Okahashi, H., & Linsley, B. K. (2008). Abrupt climate change and collapse of deep-sea ecosystems. Proceedings of the National Academy of Sciences of the United States of America, 105 (5), 1556–1560. doi: 10.1073/pnas.0705486105 Yasuhara, M., & Danovaro, R. (2016). Temperature impacts on deep-sea biodiversity. Biological Reviews, 91 (2), 275–287. doi: 10.1111/brv.12169 Yasuhara, M., Doi, H., Wei, C. L., Danovaro, R., & Myhre, S. E. (2016). Biodiversity-ecosystem functioning relationships in long-term time series and palaeoecological records: Deep sea as a test bed. Philosophical Transactions of the Royal Society B, 371 (1694). doi: 10.1098/rstb.2015.0282 Yasuhara, M., Hunt, G., Cronin, T. M., & Okahashi, H. (2009). Temporal latitudinal-gradient dynamics and tropical instability of deep-sea species diversity. Proceedings of the National Academy of Sciences of the United States of America, 106 (51), 21717–21720. doi: 10.1073/pnas.0910935106 Yasuhara, M., Hunt, G., Dowsett, H. J., Robinson, M. M., & Stoll, D. K. (2012). Latitudinal species diversity gradient of marine zooplankton for the last three million years. Ecology Letters, 15 (10), 1174–1179. doi: 10.1111/j.1461-0248.2012.01828.x Yasuhara, M., Iwatani, H., Hunt, G., Okahashi, H., Kase, T., Hayashi, H., … Renema, W. (2017). Cenozoic dynamics of shallow-marine biodiversity in the Western Pacific. Journal of Biogeography, 44 (3), 567–578. doi: 10.1111/jbi.12880 Yasuhara, M., Okahashi, H., Cronin, T. M., Rasmussen, T. L., & Hunt, G. (2014). Response of deep-sea biodiversity to abrupt deglacial and Holocene climate changes in the North Atlantic Ocean. Global Ecology and Biogeography, 23 (9), 957–967. doi: 10.1111/geb.12178 Yasuhara, M., Tittensor, D. P., Hillebrand, H., & Worm, B. (2017). Combining marine macroecology and palaeoecology in understanding biodiversity: Microfossils as a model. Biological Reviews, 92 (1), 199–215. doi: 10.1111/brv.12223 https://ojs.uv.es/index.php/Metode/article/view/11404 doi:10.7203/metode.9.11404 Copyright (c) 2018 Mètode Science Studies Journal - Annual Review .; The grounds of science (2019); 77-81 2174-9221 2174-3487 biodiversity microfossils ecology evolution paleontology biogeography microfòssils ecologia evolució paleontologia biogeografia microfósiles ecología evolución paleontología biogeografía info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion "Peer-reviewed Article" 2019 ftunivalenciaojs https://doi.org/10.7203/metode.9.11404 2023-02-09T18:25:34Z Biodiversity has been changing both in space and time. For example, we have more species in the tropics and less species in the Arctic and Antarctic regions, constituting the latitudinal diversity gradient, one of the patterns we can see most consistently in this complex world. We know much less regarding the biodiversity gradients with time. This is because it would require a well designed continuous monitoring program, which seldom persist beyond a few decades. But, luckily, we have remains of ancient organisms, called fossils. These are basically the only direct records of past biodiversity. La biodiversitat ha anat canviant tant en l’espai com en el temps. Per exemple, trobem més espècies en els tròpics i menys en la regió àrtica i l’antàrtica, seguint un gradient longitudinal de diversitat, un dels patrons que podem observar de manera més consistent en aquest món complex. El que sabem sobre els gradients temporals de biodiversitat és molt més limitat. Això ocorre perquè faria falta un programa de seguiment continu ben dissenyat, i aquests difícilment persisteixen més enllà d’unes dècades. Però, per sort, tenim restes d’antics organismes: els fòssils. Els fòssils són bàsicament l’únic registre directe de la biodiversitat passada. La biodiversidad ha ido cambiando tanto en el espacio como en el tiempo. Por ejemplo, encontramos más especies en los trópicos y menos en la región ártica y la antártica, siguiendo un gradiente latitudinal de diversidad, uno de los patrones que podemos observar de manera más consistente en este mundo complejo. Lo que sabemos sobre los gradientes temporales de biodiversidad es mucho más limitado. Esto ocurre porque haría falta un programa de seguimiento continuo bien diseñado, y estos difícilmente persisten más allá de unas décadas. Pero, por suerte, tenemos restos de antiguos organismos: los fósiles. Los fósiles son básicamente el único registro directo de la biodiversidad pasada. Article in Journal/Newspaper Antarc* Antarctic Antártica Arctic Universitat de València: Open Journal Systems Allá ENVELOPE(17.421,17.421,66.587,66.587) Antarctic Arctic Fósiles ENVELOPE(-56.866,-56.866,-64.300,-64.300) Mètode Revista de difusió de la investigació 9 |