Long term prediction of vegetation performance on mined sands

This project on the \"Long Term Prediction of Vegetation Performance On Mined Sands\" (V.E.6.1) was undertaken to provide management with answers on the predictive ability to maintain different kinds of vegetation on raw sands. The research was designed as an integrated, multi-disciplinary...

Full description

Bibliographic Details
Main Author: Bliss, L. C. (Ed.)
Format: Report
Language:English
Published: 1977
Subjects:
Online Access:https://era.library.ualberta.ca/items/687c0498-d5eb-4333-a49b-5dc2cb0ec642
https://doi.org/10.7939/R3QJ7826N
Description
Summary:This project on the \"Long Term Prediction of Vegetation Performance On Mined Sands\" (V.E.6.1) was undertaken to provide management with answers on the predictive ability to maintain different kinds of vegetation on raw sands. The research was designed as an integrated, multi-disciplinary program that would concentrate on the role of water stress in a dynamic soil-plant-atmosphere system of a planted grass cover and a natural Jack pine forest. To date only the latter project has been initiated because of the lack of funding and approval to work on the GCOS dike in 1975. This and the Syncrude dyke represent the worst (driest) environmental situation and therefore revegetation of other sand deposits should be more easily accomplished. The Richardson Fire Tower site was chosen because of the representativeness of its Jack pine - lichen woodland on deep sands, a forest type so characteristic of northeastern Alberta. The results of the first full year show that climatically this southwest-facing sand slope warms more rapidly in spring than do level sites at Mildred Lake and Fort McMurray and that the 1976 summer was above normal for temperature. Precipitation was near normal based upon the 1941 - 1970 period. Of the >60 days of precipitation, over 60% were 4 mm or less and thus little if any water entered the soil due to tree, lichen, and litter interception. Both needle duff and lichens provide a significant barrier to surface evaporation compared with open sand. Resistance to evaporation is 2 to 3 times greater with a lichen cover than with litter. The soils are very porous which is advantageous for water entrance, thus preventing erosion but porosity is a disadvantage in maintaining higher water levels near the soil surface for plant growth. These soils recharge during snowmelt in late March - early April; little runoff occurs and over the summer soil water drawdown takes place. Soil moisture content (volume basis) is generally 8 - 15% near the surface in spring, but by late September is 1 - 3% at all depths. ...