Groundwater flow in a vertical plane at the interface of permafrost
Thesis (M.S.) University of Alaska Fairbanks, 2017 Groundwater dynamics in discontinuous permafrost aquifers are complex. The topography of permafrost redirects flow in difficult-to-predict directions that can be tens of degrees off from the regional flow direction. Large zones of permafrost vertica...
Main Author: | |
---|---|
Other Authors: | , , |
Format: | Thesis |
Language: | English |
Published: |
2017
|
Subjects: | |
Online Access: | http://hdl.handle.net/11122/7898 |
id |
ftunivalaska:oai:scholarworks.alaska.edu:11122/7898 |
---|---|
record_format |
openpolar |
spelling |
ftunivalaska:oai:scholarworks.alaska.edu:11122/7898 2023-05-15T17:40:01+02:00 Groundwater flow in a vertical plane at the interface of permafrost Paturi, Sairavichand Barnes, David L. Leigh, Mary Beth Shur, Yuri 2017-08 http://hdl.handle.net/11122/7898 en_US eng http://hdl.handle.net/11122/7898 Department of Civil and Environmental Engineering Groundwater flow Alaska North Pole Dynamics Groundwater Water table Permafrost Groundwater recharge Base flow (Hydrology) Hydrogeology Thesis ms 2017 ftunivalaska 2023-02-23T21:36:57Z Thesis (M.S.) University of Alaska Fairbanks, 2017 Groundwater dynamics in discontinuous permafrost aquifers are complex. The topography of permafrost redirects flow in difficult-to-predict directions that can be tens of degrees off from the regional flow direction. Large zones of permafrost vertically separate aquifers into supra and sub-permafrost portions. The flow dynamics in each portion of the aquifer may be dissimilar due to different controlling boundary conditions. In areas of discontinuities in permafrost, known as open taliks, groundwater in the two portions of the aquifer may mix. These areas of mixing are the focus of this study, in particular, the groundwater dynamics in taliks located in the floodplain of lower reaches of rivers. The study hypothesizes that groundwater flow in floodplain taliks of lower reaches of rivers will bifurcate between the supra and sub-permafrost portions of a discontinuous permafrost aquifer. To test this hypothesis gradient, magnitudes and flow directions were determined at several depths ranging from the water table to 150 ft. (45.7 m) below ground surface, using a linear interpolation scheme in various locations in a floodplain talik. Errors in water level measurements due to instrument errors as well as vertically moving wells were propagated into the gradient calculations by Monte Carlo analysis. Results from this research show that a vertical divide in groundwater flow forms a short distance below the top of permafrost. Groundwater flow above the divide routes into the unconfined supra-permafrost portion of the aquifer. Water below the divide flows into the confined portion of the aquifer below permafrost. The position of the vertical groundwater divide may adjust in relation to the water table position. Additionally, a methodology is presented for stochastically propagating measurement errors into gradient analyses by Monte Carlo analysis. Understanding the flow dynamics in discontinuous permafrost aquifers is key to the understanding of contaminant transport, ... Thesis North Pole permafrost Alaska University of Alaska: ScholarWorks@UA Fairbanks North Pole Talik ENVELOPE(146.601,146.601,59.667,59.667) |
institution |
Open Polar |
collection |
University of Alaska: ScholarWorks@UA |
op_collection_id |
ftunivalaska |
language |
English |
topic |
Groundwater flow Alaska North Pole Dynamics Groundwater Water table Permafrost Groundwater recharge Base flow (Hydrology) Hydrogeology |
spellingShingle |
Groundwater flow Alaska North Pole Dynamics Groundwater Water table Permafrost Groundwater recharge Base flow (Hydrology) Hydrogeology Paturi, Sairavichand Groundwater flow in a vertical plane at the interface of permafrost |
topic_facet |
Groundwater flow Alaska North Pole Dynamics Groundwater Water table Permafrost Groundwater recharge Base flow (Hydrology) Hydrogeology |
description |
Thesis (M.S.) University of Alaska Fairbanks, 2017 Groundwater dynamics in discontinuous permafrost aquifers are complex. The topography of permafrost redirects flow in difficult-to-predict directions that can be tens of degrees off from the regional flow direction. Large zones of permafrost vertically separate aquifers into supra and sub-permafrost portions. The flow dynamics in each portion of the aquifer may be dissimilar due to different controlling boundary conditions. In areas of discontinuities in permafrost, known as open taliks, groundwater in the two portions of the aquifer may mix. These areas of mixing are the focus of this study, in particular, the groundwater dynamics in taliks located in the floodplain of lower reaches of rivers. The study hypothesizes that groundwater flow in floodplain taliks of lower reaches of rivers will bifurcate between the supra and sub-permafrost portions of a discontinuous permafrost aquifer. To test this hypothesis gradient, magnitudes and flow directions were determined at several depths ranging from the water table to 150 ft. (45.7 m) below ground surface, using a linear interpolation scheme in various locations in a floodplain talik. Errors in water level measurements due to instrument errors as well as vertically moving wells were propagated into the gradient calculations by Monte Carlo analysis. Results from this research show that a vertical divide in groundwater flow forms a short distance below the top of permafrost. Groundwater flow above the divide routes into the unconfined supra-permafrost portion of the aquifer. Water below the divide flows into the confined portion of the aquifer below permafrost. The position of the vertical groundwater divide may adjust in relation to the water table position. Additionally, a methodology is presented for stochastically propagating measurement errors into gradient analyses by Monte Carlo analysis. Understanding the flow dynamics in discontinuous permafrost aquifers is key to the understanding of contaminant transport, ... |
author2 |
Barnes, David L. Leigh, Mary Beth Shur, Yuri |
format |
Thesis |
author |
Paturi, Sairavichand |
author_facet |
Paturi, Sairavichand |
author_sort |
Paturi, Sairavichand |
title |
Groundwater flow in a vertical plane at the interface of permafrost |
title_short |
Groundwater flow in a vertical plane at the interface of permafrost |
title_full |
Groundwater flow in a vertical plane at the interface of permafrost |
title_fullStr |
Groundwater flow in a vertical plane at the interface of permafrost |
title_full_unstemmed |
Groundwater flow in a vertical plane at the interface of permafrost |
title_sort |
groundwater flow in a vertical plane at the interface of permafrost |
publishDate |
2017 |
url |
http://hdl.handle.net/11122/7898 |
long_lat |
ENVELOPE(146.601,146.601,59.667,59.667) |
geographic |
Fairbanks North Pole Talik |
geographic_facet |
Fairbanks North Pole Talik |
genre |
North Pole permafrost Alaska |
genre_facet |
North Pole permafrost Alaska |
op_relation |
http://hdl.handle.net/11122/7898 Department of Civil and Environmental Engineering |
_version_ |
1766140782642724864 |