Threshold management strategies for exploited fish populations

Dissertation (Ph.D.) University of Alaska Fairbanks, 1994 Under a threshold management strategy, harvesting occurs at a constant rate but ceases when a population drops below a threshold. The threshold approach seeks to enhance long-term yield of a population and to maintain population renewability....

Full description

Bibliographic Details
Main Author: Zheng, Jie
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 1994
Subjects:
Online Access:http://hdl.handle.net/11122/5187
Description
Summary:Dissertation (Ph.D.) University of Alaska Fairbanks, 1994 Under a threshold management strategy, harvesting occurs at a constant rate but ceases when a population drops below a threshold. The threshold approach seeks to enhance long-term yield of a population and to maintain population renewability. I evaluated threshold management strategies for selected herring and pollock stocks in Alaska. First, I examined stock-recruitment data from 19 major herring stocks worldwide to provide the basis for evaluating threshold management strategies. Seventy-three percent of these stocks exhibited statistically significant density-dependence. Most stocks have compensatory, dome-shaped stock-recruitment curves. Then, I simulated threshold management strategies for eastern Bering Sea (EBS) pollock and herring and Prince William Sound (PWS) herring using a single-species model. I further examined seven alternative threshold estimation methods. Cohort analysis, catch-at-age analysis, and catch and population sampling yielded estimates of population parameters. The objective function was a weighted function of increased average yield and decreased standard deviation of yield over a planning horizon. Compared to a non-threshold approach, threshold management strategies increase the long-term average yields, stabilize population abundances, shorten rebuilding times, and increase management flexibility. For a maximum yield criterion and Ricker stock-recruitment models, optimal fishing mortalities are slightly above fishing mortalities at maximum sustained yield (MSY), and optimal threshold levels range from 40% to 60% of pristine biomass for EBS pollock, from 40% to 50% for EBS herring and from 30% to 60% for PWS herring. With fishing mortality at MSY and the criterion of equal trade-off between yield and its variation, optimal thresholds range from 20% to 30% of pristine biomass for pollock. With the status quo exploitation rate of 20%, optimal thresholds range from 10% to 25% of pristine biomass for EBS herring, and from 5% to ...