Nitrogen utilization during spring phytoplankton bloom development in the southeast Bering Sea

Dissertation (Ph.D.) University of Alaska Fairbanks, 1983 Interactions between a high latitude, continental shelf, spring phytoplankton bloom and water column physics and chemistry were studied using measured rates of nitrogen uptake. Peak bloom conditions commenced when the mixed layer shallowed an...

Full description

Bibliographic Details
Main Author: Sambrotto, Raymond Nicholas
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 1983
Subjects:
Online Access:http://hdl.handle.net/11122/4988
id ftunivalaska:oai:scholarworks.alaska.edu:11122/4988
record_format openpolar
spelling ftunivalaska:oai:scholarworks.alaska.edu:11122/4988 2023-05-15T15:43:59+02:00 Nitrogen utilization during spring phytoplankton bloom development in the southeast Bering Sea Sambrotto, Raymond Nicholas 1983-12 http://hdl.handle.net/11122/4988 en_US eng http://hdl.handle.net/11122/4988 Marine Science and Limnology Dissertation phd 1983 ftunivalaska 2023-02-23T21:36:20Z Dissertation (Ph.D.) University of Alaska Fairbanks, 1983 Interactions between a high latitude, continental shelf, spring phytoplankton bloom and water column physics and chemistry were studied using measured rates of nitrogen uptake. Peak bloom conditions commenced when the mixed layer shallowed and minimized respirational losses. Integrative light-mixing growth models were accurate during early bloom stages. An advection-diffusion model associated peak bloom nitrate uptake with pycnocline mixing rates of 2.1 m d * in an 18 m mixed layer. The accumulation of surface buoyancy was a reliable index of peak bloom temporal and spatial "patchiness" since mixing rates influenced both respirational losses and nutrient supply. Maximum nitrogen specific uptake rates (h r .- 1 ), unlike those of carbon, coincided with peak bloom conditions. Although species com positions among peak bloom periods were similar, particulate C/N ratios were not. Apparently, both intercellular factors and prevailing mixing conditions influence specific uptake rates and cell composition. A large proportion of new (nitrate) to total productivity was associated with the dominance of the early bloom forming diatoms in the mixed layer. In the absence of these net plankton the residual nanoplankton dominated community exhibited a greater dependence on regenerated nitrogen. Nitrate uptake averaged 700 mg-at m during the spring bloom and 1 g-at m-2 year-1 The yearly f factor was 0.40. Nitrogen uptake based carbon productivity was 188 g C m -2 year -1 A mass balance of the inorganic carbon system indicates that nitrate uptake alone cannot account for all the carbon leaving the surface layer. The correspondence between 1SN0~ uptake measurements and nitrate decreases suggests the diffusion of slope water into the middle shelf is slow. Large scale meteorological patterns may be responsible for the inter annual variability observed in production. Frequent May storm activity prolonged peak bloom periods, while calm conditions promoted extensive Chijl ... Doctoral or Postdoctoral Thesis Bering Sea Alaska University of Alaska: ScholarWorks@UA Bering Sea Fairbanks
institution Open Polar
collection University of Alaska: ScholarWorks@UA
op_collection_id ftunivalaska
language English
description Dissertation (Ph.D.) University of Alaska Fairbanks, 1983 Interactions between a high latitude, continental shelf, spring phytoplankton bloom and water column physics and chemistry were studied using measured rates of nitrogen uptake. Peak bloom conditions commenced when the mixed layer shallowed and minimized respirational losses. Integrative light-mixing growth models were accurate during early bloom stages. An advection-diffusion model associated peak bloom nitrate uptake with pycnocline mixing rates of 2.1 m d * in an 18 m mixed layer. The accumulation of surface buoyancy was a reliable index of peak bloom temporal and spatial "patchiness" since mixing rates influenced both respirational losses and nutrient supply. Maximum nitrogen specific uptake rates (h r .- 1 ), unlike those of carbon, coincided with peak bloom conditions. Although species com positions among peak bloom periods were similar, particulate C/N ratios were not. Apparently, both intercellular factors and prevailing mixing conditions influence specific uptake rates and cell composition. A large proportion of new (nitrate) to total productivity was associated with the dominance of the early bloom forming diatoms in the mixed layer. In the absence of these net plankton the residual nanoplankton dominated community exhibited a greater dependence on regenerated nitrogen. Nitrate uptake averaged 700 mg-at m during the spring bloom and 1 g-at m-2 year-1 The yearly f factor was 0.40. Nitrogen uptake based carbon productivity was 188 g C m -2 year -1 A mass balance of the inorganic carbon system indicates that nitrate uptake alone cannot account for all the carbon leaving the surface layer. The correspondence between 1SN0~ uptake measurements and nitrate decreases suggests the diffusion of slope water into the middle shelf is slow. Large scale meteorological patterns may be responsible for the inter annual variability observed in production. Frequent May storm activity prolonged peak bloom periods, while calm conditions promoted extensive Chijl ...
format Doctoral or Postdoctoral Thesis
author Sambrotto, Raymond Nicholas
spellingShingle Sambrotto, Raymond Nicholas
Nitrogen utilization during spring phytoplankton bloom development in the southeast Bering Sea
author_facet Sambrotto, Raymond Nicholas
author_sort Sambrotto, Raymond Nicholas
title Nitrogen utilization during spring phytoplankton bloom development in the southeast Bering Sea
title_short Nitrogen utilization during spring phytoplankton bloom development in the southeast Bering Sea
title_full Nitrogen utilization during spring phytoplankton bloom development in the southeast Bering Sea
title_fullStr Nitrogen utilization during spring phytoplankton bloom development in the southeast Bering Sea
title_full_unstemmed Nitrogen utilization during spring phytoplankton bloom development in the southeast Bering Sea
title_sort nitrogen utilization during spring phytoplankton bloom development in the southeast bering sea
publishDate 1983
url http://hdl.handle.net/11122/4988
geographic Bering Sea
Fairbanks
geographic_facet Bering Sea
Fairbanks
genre Bering Sea
Alaska
genre_facet Bering Sea
Alaska
op_relation http://hdl.handle.net/11122/4988
Marine Science and Limnology
_version_ 1766378207270928384