Peeking through a frosty window: molecular insights into the communities of Arctic soil fungi

Dissertation (Ph.D.) University of Alaska Fairbanks, 2013 Fungi are thought to be one of the most diverse groups of organisms in the Arctic. They drive mineral and energy cycles and influence the occurrence of other organisms as mutualists (mycorrhizae, endophytes, lichens), decomposers and pathogen...

Full description

Bibliographic Details
Main Author: Timling, Ina
Other Authors: Walker, Donald A., Taylor, Donald L., Chapin, F. Stuart, Laursen, Gary A., Mulder, Christa P.
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: 2013
Subjects:
Online Access:http://hdl.handle.net/11122/4634
Description
Summary:Dissertation (Ph.D.) University of Alaska Fairbanks, 2013 Fungi are thought to be one of the most diverse groups of organisms in the Arctic. They drive mineral and energy cycles and influence the occurrence of other organisms as mutualists (mycorrhizae, endophytes, lichens), decomposers and pathogens. Nevertheless, information on fungal biodiversity and distribution patterns in relation to environments across the Arctic is still sparse. Molecular methods were used to examine the diversity and community structures of ectomycorrhizal fungi (EMF) associated with two principal arctic host plants, Salix aretica and Dryas integrifolia, as well as total soil fungal communities of adjacent disturbed and undisturbed areas of patterned-ground features across the five bioclimatic subzones (A-E) of the North American Arctic. Key findings include the following: (1) More diverse fungal communities had been observed than previously known. These communities encompass nearly all fungal phyla and included all fungal guilds. However, a few species-rich fungal families dominated these fungal communities. (2) Surprisingly, species richness did not decline with latitude. (3) The most abundant fungal taxa were widely distributed in and beyond the Arctic. Yet root (EMF) and soil fungal communities showed niche preferences in regard to bioclimatic subzones. Furthermore, disturbed and undisturbed patterned ground features harbored different soil fungal communities with the exception of the coldest subzone A. In contrast, EMF community composition was not affected by host plant identity. (4) Fungal communities in the warmest subzone E were distinct from the other arctic subzones and the majority of taxa matched fungi from the boreal forest. (5) Key drivers of fungal community and guild composition along the bioclimatic gradient included regional climate, p.H as well as vegetation composition and productivity across the subzones. At the local scale of patterned-ground features, fungal communities were correlated with vegetation ...